Lin Mingbao, Ji Rongrong, Chen Shen, Sun Xiaoshuai, Lin Chia-Wen
IEEE Trans Image Process. 2020 Mar 24. doi: 10.1109/TIP.2020.2981879.
Online image hashing aims to update hash functions on-the-fly along with newly arriving data streams, which has found broad applications in computer vision and beyond. To this end, most existing methods update hash functions simply using discrete labels or pairwise similarity to explore intra-class relationships, which, however, often deteriorates search performance when facing a domain gap or semantic shift. One reason is that they ignore the particular semantic relationships among different classes, which should be taken into account in updating hash functions. Besides, the common characteristics between the label vectors (can be regarded as a sort of binary codes) and to-be-learned binary hash codes have left unexploited. In this paper, we present a novel online hashing method, termed Similarity Preserving Linkage Hashing (SPLH), which not only utilizes pairwise similarity to learn the intra-class relationships, but also fully exploits a latent linkage space to capture the inter-class relationships and the common characteristics between label vectors and to-be-learned hash codes. Specifically, SPLH first maps the independent discrete label vectors and binary hash codes into a linkage space, through which the relative semantic distance between data points can be assessed precisely. As a result, the pairwise similarities within the newly arriving data stream are exploited to learn the latent semantic space to benefit binary code learning. To learn the model parameters effectively, we further propose an alternating optimization algorithm. Extensive experiments conducted on three widely-used datasets demonstrate the superior performance of SPLH over several state-of-the-art online hashing methods.
在线图像哈希旨在随着新到达的数据流实时更新哈希函数,这在计算机视觉及其他领域有广泛应用。为此,大多数现有方法仅使用离散标签或成对相似度来更新哈希函数以探索类内关系,然而,当面对域差距或语义转移时,这往往会降低搜索性能。一个原因是它们忽略了不同类之间的特定语义关系,而在更新哈希函数时应考虑这些关系。此外,标签向量(可视为一种二进制代码)与待学习的二进制哈希码之间的共同特征尚未得到利用。在本文中,我们提出了一种新颖的在线哈希方法,称为相似性保持链接哈希(SPLH),它不仅利用成对相似度来学习类内关系,还充分利用潜在链接空间来捕获类间关系以及标签向量与待学习哈希码之间的共同特征。具体而言,SPLH首先将独立的离散标签向量和二进制哈希码映射到一个链接空间,通过该空间可以精确评估数据点之间的相对语义距离。结果,利用新到达数据流中的成对相似度来学习潜在语义空间,以利于二进制代码学习。为了有效地学习模型参数,我们进一步提出了一种交替优化算法。在三个广泛使用的数据集上进行的大量实验表明,SPLH比几种现有的在线哈希方法具有更优越的性能。