Department of Agronomy, Kansas State University, Manhattan, Kansas 66506.
Kansas State University, Agricultural Research Center, Hays, Kansas 67601.
G3 (Bethesda). 2020 May 4;10(5):1785-1796. doi: 10.1534/g3.119.400658.
In the cereal crop sorghum () inflorescence morphology variation underlies yield variation and confers adaptation across precipitation gradients, but its genetic basis is poorly understood. We characterized the genetic architecture of sorghum inflorescence morphology using a global nested association mapping (NAM) population (2200 recombinant inbred lines) and 198,000 phenotypic observations from multi-environment trials for four inflorescence morphology traits (upper branch length, lower branch length, rachis length, and rachis diameter). Trait correlations suggest that lower and upper branch length are under somewhat independent control, while lower branch length and rachis diameter are highly pleiotropic. Joint linkage and genome-wide association mapping revealed an oligogenic architecture with 1-22 QTL per trait, each explaining 0.1-5.0% of variation across the entire NAM population. There is a significant enrichment (2.twofold) of QTL colocalizing with grass inflorescence gene homologs, notably with orthologs of maize and rice and Still, many QTL do not colocalize with inflorescence gene homologs. In global georeferenced germplasm, allelic variation at the major inflorescence QTL is geographically patterned but only weakly associated with the gradient of annual precipitation. Comparison of NAM with diversity panel association suggests that naive association models may capture some true associations not identified by mixed linear models. Overall, the findings suggest that global inflorescence diversity in sorghum is largely controlled by oligogenic, epistatic, and pleiotropic variation in ancestral regulatory networks. The findings also provide a basis for genomics-enabled breeding of locally-adapted inflorescence morphology.
在谷类作物高粱中,花序形态的变异是产量变异的基础,并赋予了其对降水梯度的适应能力,但它的遗传基础还知之甚少。我们使用全球嵌套关联作图(NAM)群体(2200 个重组自交系)和来自四个花序形态性状(上枝长、下枝长、穗轴长和穗轴直径)的多环境试验的 198000 个表型观察值,对高粱花序形态的遗传结构进行了描述。性状相关性表明,下枝和上枝长受某些独立控制,而下枝长和穗轴直径高度是多效的。联合连锁和全基因组关联作图揭示了一种寡基因遗传结构,每个性状有 1-22 个 QTL,每个 QTL解释整个 NAM 群体变异的 0.1-5.0%。与草花序基因同源物共定位的 QTL 显著富集(2.2 倍),特别是与玉米和水稻的同源物,尽管如此,许多 QTL 并不与花序基因同源物共定位。在全球地理参考种质资源中,主要花序 QTL 的等位基因变异具有地理模式,但与年降水量梯度的相关性很弱。NAM 与多样性面板关联的比较表明,朴素关联模型可能捕获到一些未被混合线性模型识别的真实关联。总体而言,这些发现表明,高粱的全球花序多样性主要由祖先调控网络的寡基因、上位性和多效性变异控制。这些发现还为基于基因组学的本地化适应花序形态的育种提供了基础。