Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, 69120 Heidelberg, Germany.
Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, 60590 Frankfurt am Main, Germany.
Cereb Cortex. 2020 Jun 1;30(7):4044-4063. doi: 10.1093/cercor/bhaa025.
Amyloid-β precursor protein (APP) is central to the pathogenesis of Alzheimer's disease, yet its physiological functions remain incompletely understood. Previous studies had indicated important synaptic functions of APP and the closely related homologue APLP2 in excitatory forebrain neurons for spine density, synaptic plasticity, and behavior. Here, we show that APP is also widely expressed in several interneuron subtypes, both in hippocampus and cortex. To address the functional role of APP in inhibitory neurons, we generated mice with a conditional APP/APLP2 double knockout (cDKO) in GABAergic forebrain neurons using DlxCre mice. These DlxCre cDKO mice exhibit cognitive deficits in hippocampus-dependent spatial learning and memory tasks, as well as impairments in species-typic nesting and burrowing behaviors. Deficits at the behavioral level were associated with altered neuronal morphology and synaptic plasticity Long-Term Potentiation (LTP). Impaired basal synaptic transmission at the Schafer collateral/CA1 pathway, which was associated with altered compound excitatory/inhibitory synaptic currents and reduced action potential firing of CA1 pyramidal cells, points to a disrupted excitation/inhibition balance in DlxCre cDKOs. Together, these impairments may lead to hippocampal dysfunction. Collectively, our data reveal a crucial role of APP family proteins in inhibitory interneurons to maintain functional network activity.
淀粉样前体蛋白 (APP) 是阿尔茨海默病发病机制的核心,但其生理功能仍不完全清楚。先前的研究表明 APP 和密切相关的同源物 APLP2 在兴奋性前脑神经元中具有重要的突触功能,对于棘密度、突触可塑性和行为具有重要作用。在这里,我们表明 APP 也广泛表达于海马体和皮层中的几种中间神经元亚型中。为了确定 APP 在抑制性神经元中的功能作用,我们利用 DlxCre 小鼠在 GABA 能性前脑神经元中生成 APP/APLP2 双敲除(cDKO)条件性敲除小鼠。这些 DlxCre cDKO 小鼠在海马体依赖的空间学习和记忆任务中表现出认知缺陷,以及在种属典型的筑巢和挖掘行为中存在缺陷。行为水平的缺陷与神经元形态和突触可塑性长时程增强(LTP)的改变有关。Schafer 侧枝/CA1 通路的基础突触传递受损,这与复合兴奋性/抑制性突触电流的改变和 CA1 锥体神经元动作电位放电减少有关,提示 DlxCre cDKO 中兴奋/抑制平衡被破坏。总之,这些损伤可能导致海马体功能障碍。总的来说,我们的数据揭示了 APP 家族蛋白在抑制性中间神经元中对于维持功能性网络活动的重要作用。