Li Zhenyou, Vinayan Bhaghavathi P, Jankowski Piotr, Njel Christian, Roy Ananyo, Vegge Tejs, Maibach Julia, Lastra Juan Maria García, Fichtner Maximilian, Zhao-Karger Zhirong
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081, Ulm, Germany.
Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Anker Engelunds Vej, 2800 Kgs., Lyngby, Denmark.
Angew Chem Int Ed Engl. 2020 Jul 6;59(28):11483-11490. doi: 10.1002/anie.202002560. Epub 2020 May 8.
The development of multivalent metal (such as Mg and Ca) based battery systems is hindered by lack of suitable cathode chemistry that shows reversible multi-electron redox reactions. Cationic redox centres in the classical cathodes can only afford stepwise single-electron transfer, which are not ideal for multivalent-ion storage. The charge imbalance during multivalent ion insertion might lead to an additional kinetic barrier for ion mobility. Therefore, multivalent battery cathodes only exhibit slope-like voltage profiles with insertion/extraction redox of less than one electron. Taking VS as a model material, reversible two-electron redox with cationic-anionic contributions is verified in both rechargeable Mg batteries (RMBs) and rechargeable Ca batteries (RCBs). The corresponding cells exhibit high capacities of >300 mAh g at a current density of 100 mA g in both RMBs and RCBs, resulting in a high energy density of >300 Wh kg for RMBs and >500 Wh kg for RCBs. Mechanistic studies reveal a unique redox activity mainly at anionic sulfides moieties and fast Mg ion diffusion kinetics enabled by the soft structure and flexible electron configuration of VS .
基于多价金属(如镁和钙)的电池系统的发展受到缺乏合适的阴极化学的阻碍,这种阴极化学应表现出可逆的多电子氧化还原反应。传统阴极中的阳离子氧化还原中心只能进行逐步的单电子转移,这对于多价离子存储并不理想。多价离子插入过程中的电荷不平衡可能会导致离子迁移的额外动力学障碍。因此,多价电池阴极仅表现出斜率状的电压曲线,其插入/脱出氧化还原小于一个电子。以VS作为模型材料,在可充电镁电池(RMB)和可充电钙电池(RCB)中均验证了具有阳离子-阴离子贡献的可逆双电子氧化还原。相应的电池在RMB和RCB中,在100 mA g的电流密度下均表现出>300 mAh g的高容量,导致RMB的能量密度>300 Wh kg,RCB的能量密度>500 Wh kg。机理研究揭示了一种独特的氧化还原活性,主要存在于阴离子硫化物部分,并且VS的软结构和灵活的电子构型使得镁离子具有快速扩散动力学。