Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrients in Crop, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China.
Institute of Oceanography, Minjiang University, Fuzhou 350108, China.
Plant Physiol. 2020 Jun;183(2):780-792. doi: 10.1104/pp.19.01020. Epub 2020 Mar 27.
The rhizosheath is a layer of soil around the root that provides a favorable environment for soil microbe enrichment and root growth. Rice () roots form rhizosheaths under moderate soil drying (MSD) conditions, but how the rhizosheath forms associations with microbes is unclear. To investigate rice rhizosheath formation under MSD, we employed a multiphasic approach, integrating data from high-throughput sequencing and root-bacteria interactions. Rice roots formed a pronounced rhizosheath under MSD, but not under continuous flooding regimens. Plant growth-promoting rhizobacteria of the Enterobacteriaceae were enriched in rhizosheaths of two different rice varieties, 'Gaoshan 1' (drought tolerant) and 'Nipponbare' (drought sensitive). RNA-sequencing analysis revealed that the ethylene pathway was induced in the rhizosheath-root system under MSD. , a bacterium isolated from the rhizosheath, degrades the ethylene precursor 1-aminocyclopropane-1-carboxylate, thereby increasing rhizosheath formation. Furthermore, a 1-aminocyclopropane-1-carboxylate deaminase-deficient mutant of failed to enhance rice rhizosheath formation. Our results suggest that root-bacteria associations substantially contribute to rhizosheath formation in rice under MSD conditions by mechanisms that involve the ethylene response. These data inform strategies to reduce water consumption in rice production, one of the most water-intensive human activities.
根鞘是围绕在根部的一层土壤,为土壤微生物的富集和根的生长提供了有利的环境。在适度土壤干燥(MSD)条件下,水稻()根形成根鞘,但根鞘如何与微生物形成关联尚不清楚。为了研究水稻在 MSD 下的根鞘形成,我们采用了多相方法,整合了高通量测序和根-细菌相互作用的数据。在 MSD 下,水稻根形成了明显的根鞘,但在连续淹水条件下则没有。肠杆菌科的植物促生根际细菌在两种不同水稻品种“高山 1 号”(耐旱)和“日本晴”(耐旱)的根鞘中得到了富集。RNA 测序分析显示,在 MSD 下,根鞘-根系统中的乙烯途径被诱导。从根鞘中分离出的一株细菌能够降解乙烯前体 1-氨基环丙烷-1-羧酸,从而促进根鞘的形成。此外,一株 1-氨基环丙烷-1-羧酸脱氨酶缺陷突变体未能增强水稻根鞘的形成。我们的研究结果表明,在 MSD 条件下,根-细菌的相互作用通过涉及乙烯反应的机制,显著促进了水稻根鞘的形成。这些数据为减少水稻生产中的用水量提供了策略,水稻生产是人类最耗水的活动之一。