School of Electronic and Information Engineering, Beijing Jiaotong University, Shangyuan Village No 3 in Haidian, Beijing, China.
Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Yanjiangxilu No 151 in Yuexiu, Guangzhou, China.
Eur Radiol. 2020 Aug;30(8):4595-4605. doi: 10.1007/s00330-020-06768-y. Epub 2020 Mar 28.
We develop and validate a radiomics model based on multiparametric magnetic resonance imaging (MRI) in the classification of the pulmonary lesion and identify optimal machine learning methods.
This retrospective analysis included 201 patients (143 malignancies, 58 benign lesions). Radiomics features were extracted from multiparametric MRI, including T2-weighted imaging (T2WI), T1-weighted imaging (TIWI), and apparent diffusion coefficient (ADC) map. Three feature selection methods, including recursive feature elimination (RFE), t test, and least absolute shrinkage and selection operator (LASSO), and three classification methods, including linear discriminate analysis (LDA), support vector machine (SVM), and random forest (RF) were used to distinguish benign and malignant pulmonary lesions. Performance was compared by AUC, sensitivity, accuracy, precision, and specificity. Analysis of performance differences in three randomly drawn cross-validation sets verified the stability of the results.
For most single MR sequences or combinations of multiple MR sequences, RFE feature selection method with SVM classifier had the best performance, followed by RFE with RF. The radiomics model based on multiple sequences showed a higher diagnostic accuracy than single sequence for every machine learning method. Using RFE with SVM, the joint model of T1WI, T2WI, and ADC showed the highest performance with AUC = 0.88 ± 0.02 (sensitivity 83%; accuracy 82%; precision 91%; specificity 79%) in test set.
Quantitative radiomics features based on multiparametric MRI have good performance in differentiating lung malignancies and benign lesions. The machine learning method of RFE with SVM is superior to the combination of other feature selection and classifier methods.
• Radiomics approach has the potential to distinguish between benign and malignant pulmonary lesions. • Radiomics model based on multiparametric MRI has better performance than single-sequence models. • The machine learning methods RFE with SVM perform best in the current cohort.
我们开发并验证了一种基于多参数磁共振成像(MRI)的放射组学模型,用于肺病变分类,并确定最佳的机器学习方法。
本回顾性分析纳入了 201 例患者(143 例恶性肿瘤,58 例良性病变)。从多参数 MRI 中提取放射组学特征,包括 T2 加权成像(T2WI)、T1 加权成像(TIWI)和表观扩散系数(ADC)图。使用三种特征选择方法,包括递归特征消除(RFE)、t 检验和最小绝对收缩和选择算子(LASSO),以及三种分类方法,包括线性判别分析(LDA)、支持向量机(SVM)和随机森林(RF),来区分良恶性肺病变。通过 AUC、敏感度、准确度、精确度和特异度比较性能。在三个随机抽取的交叉验证集中分析性能差异,以验证结果的稳定性。
对于大多数单一 MR 序列或多个 MR 序列的组合,使用 SVM 分类器的 RFE 特征选择方法表现最佳,其次是使用 RF 的 RFE。对于每种机器学习方法,基于多序列的放射组学模型的诊断准确性均高于单一序列。使用 RFE 与 SVM,T1WI、T2WI 和 ADC 的联合模型在测试集中表现最佳,AUC=0.88±0.02(敏感度 83%;准确度 82%;精确度 91%;特异度 79%)。
基于多参数 MRI 的定量放射组学特征在区分肺部良恶性病变方面具有良好的性能。基于 RFE 的 SVM 机器学习方法优于其他特征选择和分类器方法的组合。
• 放射组学方法有可能区分良性和恶性肺病变。
• 基于多参数 MRI 的放射组学模型比单序列模型具有更好的性能。
• 在当前队列中,基于 RFE 的 SVM 机器学习方法表现最佳。