Wang Hexiang, Zhang Jian, Bao Shan, Liu Jingwei, Hou Feng, Huang Yonghua, Chen Haisong, Duan Shaofeng, Hao Dapeng, Liu Jihua
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
J Magn Reson Imaging. 2020 Sep;52(3):873-882. doi: 10.1002/jmri.27111. Epub 2020 Feb 29.
Preoperative differentiation between malignant and benign soft-tissue masses is important for treatment decisions.
PURPOSE/HYPOTHESIS: To construct/validate a radiomics-based machine method for differentiation between malignant and benign soft-tissue masses.
Retrospective.
In all, 206 cases.
FIELD STRENGTH/SEQUENCE: The T sequence was acquired with the following range of parameters: relaxation time / echo time (TR/TE), 352-550/2.75-19 msec. The T sequence was acquired with the following parameters: TR/TE, 700-6370/40-120 msec. The data were divided into a 3.0T training cohort, a 1.5T MR validation cohort, and a 3.0T external validationcohort.
Twelve machine-learning methods were trained to establish classification models to predict the likelihood of malignancy of each lesion. The data of 206 cases were separated into a training set (n = 69) and two validation sets (n = 64, 73, respectively).
The LASSO feature method + RF classifier achieved the highest AUC of 0.86 and 0.82 in the two validation cohorts. The nomogram achieved AUCs of 0.96 and 0.88, respectively, in the two validation sets, which was higher than that of the radiomic algorithm in the two validation sets and clinical model of the validation 1 set (0.92, 0.88 respectively). The accuracy, sensitivity, and specificity of the radiomics nomogram were 90.5%, 100%, and 80.6%, respectively, for validation set 1; and 80.8%, 75.8%, and 85.0% for validation set 2.
A machine-learning nomogram based on radiomics was accurate for distinguishing between malignant and benign soft-tissue masses.
3 TECHNICAL EFFICACY: Stage 2 J. Magn. Reson. Imaging 2020;52:873-882.
术前区分恶性和良性软组织肿块对于治疗决策很重要。
目的/假设:构建/验证一种基于放射组学的机器方法,用于区分恶性和良性软组织肿块。
回顾性研究。
共206例。
场强/序列:T序列采用以下参数范围采集:弛豫时间/回波时间(TR/TE),352 - 550/2.75 - 19毫秒。T序列采用以下参数采集:TR/TE,700 - 6370/40 - 120毫秒。数据分为一个3.0T训练队列、一个1.5T磁共振验证队列和一个3.0T外部验证队列。
训练12种机器学习方法以建立分类模型,预测每个病变的恶性可能性。206例病例的数据被分为一个训练集(n = 69)和两个验证集(n分别 = 64、73)。
1)人口统计学特征:对连续变量酌情进行单因素方差分析(ANOVA)检验。对分类变量酌情进行χ检验或Fisher精确检验。2)比较四种特征选择方法(最小绝对收缩和选择算子[LASSO]、Boruta、递归特征消除[RFE]和最小冗余最大相关性[mRMR])和三种分类器(支持向量机[SVM]、广义线性模型[GLM]和随机森林[RF])在选择每个病变恶性可能性方面的性能。使用受试者操作特征曲线下面积(AUC)和准确率(ACC)值评估放射组学模型的性能。
LASSO特征方法 + RF分类器在两个验证队列中分别实现了最高的AUC为0.86和0.82。列线图在两个验证集中的AUC分别为0.96和0.88,高于两个验证集中放射组学算法和验证1集临床模型的AUC(分别为0.92、0.88)。放射组学列线图在验证集1中的准确率、敏感性和特异性分别为90.5%、100%和八0.6%;在验证集2中分别为80.8%、75.8%和85.0%。
基于放射组学的机器学习列线图在区分恶性和良性软组织肿块方面是准确的。
3 技术疗效:2期 《磁共振成像杂志》2020年;52:873 - 882。