Suppr超能文献

微调褶皱硫化镉单层间界面的物理性质以实现超高压电性、激子太阳能电池效率和热电性。

Tweaking the Physics of Interfaces between Monolayers of Buckled Cadmium Sulfide for a Superhigh Piezoelectricity, Excitonic Solar Cell Efficiency, and Thermoelectricity.

作者信息

Mohanta Manish Kumar, Sarkar Abir De

机构信息

Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab 160062, India.

出版信息

ACS Appl Mater Interfaces. 2020 Apr 15;12(15):18123-18137. doi: 10.1021/acsami.0c00864. Epub 2020 Apr 7.

Abstract

Interfaces of heterostructures are routinely studied for different applications. Interestingly, monolayers of the same material when interfaced in an unconventional manner can bring about novel properties. For instance, CdS monolayers, stacked in a particular order, are found to show unprecedented potential in the conversion of nanomechanical energy, solar energy, and waste heat into electricity, which has been systematically investigated in this work, using DFT-based approaches. Moreover, stable ultrathin structures showing strong capabilities for all kinds of energy conversion are scarce. The emergence of a very high out-of-plane piezoelectricity, || ≈ 56 pm/V, induced by the inversion symmetry broken in the buckled structure helps to supersede the previously reported bulk wurzite GaN, AlN, and Janus multilayer structures of Mo- and W-based dichalcogenides. The piezoelectric coefficients have been found to be largely dependent on the relative stacking between the two layers. CdS bilayer is a direct band gap semiconductor, with its band edges straddling the water redox potential, thereby making it thermodynamically favorable for photocatalytic applications. Strain engineering facilitates its transition from type I to type II semiconductor in CdS bilayer stacked over monolayer boron phosphide, and the theoretically calculated power conversion efficiency (PCE) in the 2D excitonic solar cell exceeds 27% for a fill factor of 0.8, which is much higher than that in ZnO/CdS/CuInGaSe solar cell (20% efficiency). Thermoelectric properties have been investigated using semi classical Boltzmann transport equations for electrons and phonons within the constant relaxation time approximation coupled to deformation potential theory, which reveal ultralow thermal conductivity ( ≈ 0.78 W m K) at room temperature because of the presence of heavy element Cd, strong anharmonicity (high mode Gruneisen parameter at long wavelength, phonon lifetime <5 ps), low phonon group velocity (4 km/s), and low Debye temperature (260 K). Such a low thermal conductivity is lower than that of dumbbell silicene (2.86 W m K), SnS (6.41 W m K) and SnSe (3.82 W m K), and SnP (4.97 W m K). CdS bilayer shows a thermoelectric figure of merit () ≈ 0.8 for p-type and ∼0.7 for n-type doping at room temperature. Its ultrahigh carrier mobility (μ ≈ 2270 cm V s) is higher than that of single-layer MoS and comparable to that in InSe. The versatile properties of CdS bilayer together with its all-round stability supported by ab initio molecular dynamics simulation, phonon dispersion, and satisfaction of Born-Huang stability criteria highlight its outstanding potential for applications in device fabrication and applications in next-generation nanoelectronics and energy harvesting.

摘要

人们经常研究异质结构的界面以用于不同的应用。有趣的是,相同材料的单层以非常规方式连接时可以带来新的特性。例如,以特定顺序堆叠的硫化镉单层在将纳米机械能、太阳能和废热转化为电能方面显示出前所未有的潜力,本工作使用基于密度泛函理论(DFT)的方法对此进行了系统研究。此外,具有强大的各种能量转换能力的稳定超薄结构很少见。在弯曲结构中由于反演对称性破缺而产生的非常高的面外压电性,||≈56皮米/伏,有助于超越先前报道的纤锌矿型氮化镓、氮化铝以及基于钼和钨的二硫化物的Janus多层结构。已发现压电系数在很大程度上取决于两层之间的相对堆叠。硫化镉双层是一种直接带隙半导体,其带边跨越水的氧化还原电位,因此使其在光催化应用中在热力学上具有优势。应变工程促进了其在堆叠于单层磷化硼上的硫化镉双层中从I型半导体向II型半导体的转变,并且在二维激子太阳能电池中,对于填充因子为0.8的情况,理论计算的功率转换效率(PCE)超过27%,这远高于氧化锌/硫化镉/铜铟镓硒太阳能电池(效率为20%)。使用半经典玻尔兹曼输运方程对电子和声子进行了热电性质研究,该方程在恒定弛豫时间近似下与形变势理论耦合,结果表明由于存在重元素镉、强非谐性(长波长下的高模式格鲁涅森参数,声子寿命<5皮秒)、低声子群速度(4千米/秒)和低德拜温度(260开尔文),在室温下具有超低的热导率(≈0.78瓦米开尔文)。这样低的热导率低于哑铃状硅烯(2.86瓦米开尔文)、硫化锡(6.41瓦米开尔文)、硒化锡(3.82瓦米开尔文)和磷化锡(4.97瓦米开尔文)。硫化镉双层在室温下对于p型掺杂显示出热电优值()≈0.8,对于n型掺杂约为0.7。其超高的载流子迁移率(μ≈2270厘米伏秒)高于单层二硫化钼,并且与硒化铟中的相当。硫化镉双层的多功能特性以及从头算分子动力学模拟、声子色散和满足Born-Huang稳定性标准所支持的全方位稳定性突出了其在器件制造以及下一代纳米电子学和能量收集应用中的杰出潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验