Li Zhen, Li Chonghui, Yu Jing, Li Zhaoxiang, Zhao Xiaofei, Liu Aihua, Jiang Shouzhen, Yang Cheng, Zhang Chao, Man Baoyuan
Opt Express. 2020 Mar 30;28(7):9174-9185. doi: 10.1364/OE.389886.
The weak plasmonic coupling intensity in an aluminum (Al) nanostructure has limited potential applications in excellent low-cost surface-enhanced Raman scattering (SERS) substrates and light harvesting. In this report, we aim to elevate the plasmonic coupling intensity by fabricating an Al nanoparticle (NP)-film system. In the system, the Al NP are fabricated directly on different Al film layers, and the nanoscale-thick alumina interlayer obtained between neighboring Al films acts as natural dielectric gaps. Interestingly, as the number of Al film layers increase, the plasmonic couplings generated between the Al NP and Al film increase as well. It is demonstrated that the confined gap plasmon modes stimulated in the nanoscale-thick alumina region between the adjacent Al films contribute significantly to elevating the plasmonic coupling intensity. The finite-difference time-domain (FDTD) method is used to carry out the simulations and verifies this result.
铝(Al)纳米结构中较弱的等离子体耦合强度限制了其在优质低成本表面增强拉曼散射(SERS)基底和光捕获方面的潜在应用。在本报告中,我们旨在通过制备铝纳米颗粒(NP)-薄膜系统来提高等离子体耦合强度。在该系统中,铝纳米颗粒直接制备在不同的铝薄膜层上,相邻铝薄膜之间形成的纳米级厚氧化铝中间层充当天然介电间隙。有趣的是,随着铝薄膜层数的增加,铝纳米颗粒与铝薄膜之间产生的等离子体耦合也增加。结果表明,相邻铝薄膜之间纳米级厚氧化铝区域中激发的受限间隙等离子体模式对提高等离子体耦合强度有显著贡献。采用时域有限差分(FDTD)方法进行模拟并验证了这一结果。