Suppr超能文献

基于交叉频率耦合算法的工作记忆期间脑网络的动态特性。

The dynamic properties of a brain network during working memory based on the algorithm of cross-frequency coupling.

作者信息

Zhang Wei, Guo Lei, Liu Dongzhao, Xu Guizhi

机构信息

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130 China.

出版信息

Cogn Neurodyn. 2020 Apr;14(2):215-228. doi: 10.1007/s11571-019-09562-9. Epub 2019 Nov 21.

Abstract

Working memory (WM) refers to a memory system with limited energy for short-term maintenance and plays an important role in cognitive functions. At present, research regarding WM mostly focuses on the coordination between neural signals in the signal microelectrode channel. However, how neural signals coordinate the coding of WM at the network level is rarely studied. Cross-frequency coupling (CFC) reflects the coordinated effect between different frequency components (e.g., theta and gamma) of local field potentials (LFPs) during WM. In this study, we try to map the changes that occur in the brain networks during WM at the level of CFC between theta-gamma of LFPs. First, a 16-channel brain network by using the CFC between theta-gamma of LFPs during WM was constructed. Then, the dynamic properties of the brain network during WM were analyzed based on graph theory. Experimental results show that the LFPs power increased at the WM state than at resting stat, but decreased across learning; the CFC between theta-gamma increased with learning days and phase-amplitude coupling (PAC) in the WM state was higher than that in free choice state and rest state; the changes of average degree, average shortest path length and global efficiency had significant difference on learning days. We can indicate that the CFC between theta-gamma in the network plays an important role in the WM formation. Furthermore, correct storage of WM information will not change local information transmission and the small-world attribute, while, it can increase the network connection and efficiency of information transmission.

摘要

工作记忆(WM)是指一种能量有限的用于短期维持的记忆系统,在认知功能中起着重要作用。目前,关于工作记忆的研究大多集中在信号微电极通道中神经信号之间的协调。然而,神经信号如何在网络层面协调工作记忆的编码却鲜有研究。交叉频率耦合(CFC)反映了工作记忆期间局部场电位(LFP)不同频率成分(如θ波和γ波)之间的协同效应。在本研究中,我们试图在LFP的θ-γ交叉频率耦合水平上描绘工作记忆期间大脑网络中发生的变化。首先,利用工作记忆期间LFP的θ-γ交叉频率耦合构建了一个16通道的大脑网络。然后,基于图论分析了工作记忆期间大脑网络的动态特性。实验结果表明,工作记忆状态下LFP功率比静息状态下增加,但在学习过程中降低;θ-γ之间的交叉频率耦合随学习天数增加,工作记忆状态下的相位-振幅耦合(PAC)高于自由选择状态和静息状态;平均度、平均最短路径长度和全局效率的变化在学习天数上有显著差异。我们可以表明,网络中θ-γ之间的交叉频率耦合在工作记忆形成中起重要作用。此外,工作记忆信息的正确存储不会改变局部信息传递和小世界属性,同时,它可以增加网络连接和信息传递效率。

相似文献

4
Working Memory and Cross-Frequency Coupling of Neuronal Oscillations.工作记忆与神经元振荡的交叉频率耦合
Front Psychol. 2021 Oct 21;12:756661. doi: 10.3389/fpsyg.2021.756661. eCollection 2021.

引用本文的文献

本文引用的文献

5
Hippocampal CA1 gamma power predicts the precision of spatial memory judgments.海马 CA1 伽马功率预测空间记忆判断的准确性。
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):10148-10153. doi: 10.1073/pnas.1805724115. Epub 2018 Sep 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验