Department of Computer Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, 32816, FL, USA.
Department of Computer Science and Engineering, University of Minnesota Twin Cities, 200 Union Street SE, Minneapolis, 55455, MN, USA.
BMC Genomics. 2020 Mar 30;21(1):272. doi: 10.1186/s12864-020-6643-8.
Most eukaryotic genes produce different transcripts of multiple isoforms by inclusion or exclusion of particular exons. The isoforms of a gene often play diverse functional roles, and thus it is necessary to accurately measure isoform expressions as well as gene expressions. While previous studies have demonstrated the strong agreement between mRNA sequencing (RNA-seq) and array-based gene and/or isoform quantification platforms (Microarray gene expression and Exon-array), the more recently developed NanoString platform has not been systematically evaluated and compared, especially in large-scale studies across different cancer domains.
In this paper, we present a large-scale comparative study among RNA-seq, NanoString, array-based, and RT-qPCR platforms using 46 cancer cell lines across different cancer types. The goal is to understand and evaluate the calibers of the platforms for measuring gene and isoform expressions in cancer studies. We first performed NanoString experiments on 59 cancer cell lines with 404 custom-designed probes for measuring the expressions of 478 isoforms in 155 genes, and additional RT-qPCR experiments for a subset of the measured isoforms in 13 cell lines. We then combined the data with the matched RNA-seq, Exon-array, and Microarray data of 46 of the 59 cell lines for the comparative analysis.
In the comparisons of the platforms for measuring the expressions at both isoform and gene levels, we found that (1) the agreement on isoform expressions is lower than the agreement on gene expressions across the four platforms; (2) NanoString and Exon-array are not consistent on isoform quantification even though both techniques are based on hybridization reactions; (3) RT-qPCR experiments are more consistent with RNA-seq and Exon-array than NanoString in isoform quantification; (4) different RNA-seq isoform quantification methods show varying estimation results, and among the methods, Net-RSTQ and eXpress are more consistent across the platforms; and (5) RNA-seq has the best overall consistency with the other platforms on gene expression quantification.
大多数真核基因通过包含或排除特定外显子来产生多种异构体的不同转录本。基因的异构体通常发挥多样化的功能作用,因此有必要准确测量异构体的表达以及基因的表达。虽然先前的研究已经证明了 mRNA 测序(RNA-seq)与基于阵列的基因和/或异构体定量平台(微阵列基因表达和外显子阵列)之间具有很强的一致性,但最近开发的 NanoString 平台尚未得到系统的评估和比较,特别是在不同癌症领域的大规模研究中。
在本文中,我们使用来自不同癌症类型的 46 种癌细胞系进行了 RNA-seq、NanoString、基于阵列和 RT-qPCR 平台之间的大规模比较研究。目的是了解和评估这些平台在癌症研究中测量基因和异构体表达的能力。我们首先在 59 种癌细胞系上进行了 NanoString 实验,使用了 404 个针对 155 个基因中的 478 个异构体的定制探针,并在 13 种细胞系中对部分测量异构体进行了额外的 RT-qPCR 实验。然后,我们将这些数据与 46 种癌细胞系中的匹配 RNA-seq、外显子阵列和微阵列数据相结合,进行了比较分析。
在比较四种平台测量异构体和基因表达的能力时,我们发现:(1)在四个平台上,异构体表达的一致性低于基因表达的一致性;(2)尽管基于杂交反应,NanoString 和外显子阵列在异构体定量方面并不一致;(3)在异构体定量方面,RT-qPCR 实验比 NanoString 更与 RNA-seq 和外显子阵列一致;(4)不同的 RNA-seq 异构体定量方法显示出不同的估计结果,在这些方法中,Net-RSTQ 和 eXpress 在平台间的一致性更高;(5)在基因表达定量方面,RNA-seq 与其他平台的整体一致性最好。