Wang Charles, Gong Binsheng, Bushel Pierre R, Thierry-Mieg Jean, Thierry-Mieg Danielle, Xu Joshua, Fang Hong, Hong Huixiao, Shen Jie, Su Zhenqiang, Meehan Joe, Li Xiaojin, Yang Lu, Li Haiqing, Łabaj Paweł P, Kreil David P, Megherbi Dalila, Gaj Stan, Caiment Florian, van Delft Joost, Kleinjans Jos, Scherer Andreas, Devanarayan Viswanath, Wang Jian, Yang Yong, Qian Hui-Rong, Lancashire Lee J, Bessarabova Marina, Nikolsky Yuri, Furlanello Cesare, Chierici Marco, Albanese Davide, Jurman Giuseppe, Riccadonna Samantha, Filosi Michele, Visintainer Roberto, Zhang Ke K, Li Jianying, Hsieh Jui-Hua, Svoboda Daniel L, Fuscoe James C, Deng Youping, Shi Leming, Paules Richard S, Auerbach Scott S, Tong Weida
1] Center for Genomics and Division of Microbiology &Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA. [2].
1] Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA. [2].
Nat Biotechnol. 2014 Sep;32(9):926-32. doi: 10.1038/nbt.3001. Epub 2014 Aug 24.
The concordance of RNA-sequencing (RNA-seq) with microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed using a range of chemical treatment conditions. Here we use a comprehensive study design to generate Illumina RNA-seq and Affymetrix microarray data from the same liver samples of rats exposed in triplicate to varying degrees of perturbation by 27 chemicals representing multiple modes of action (MOAs). The cross-platform concordance in terms of differentially expressed genes (DEGs) or enriched pathways is linearly correlated with treatment effect size (R(2)0.8). Furthermore, the concordance is also affected by transcript abundance and biological complexity of the MOA. RNA-seq outperforms microarray (93% versus 75%) in DEG verification as assessed by quantitative PCR, with the gain mainly due to its improved accuracy for low-abundance transcripts. Nonetheless, classifiers to predict MOAs perform similarly when developed using data from either platform. Therefore, the endpoint studied and its biological complexity, transcript abundance and the genomic application are important factors in transcriptomic research and for clinical and regulatory decision making.
在一系列化学处理条件下,尚未对RNA测序(RNA-seq)与微阵列在全基因组差异基因表达分析方面的一致性进行严格评估。在此,我们采用全面的研究设计,从经一式三份处理、暴露于代表多种作用模式(MOA)的27种化学物质不同程度扰动的大鼠肝脏样本中,生成Illumina RNA-seq和Affymetrix微阵列数据。在差异表达基因(DEG)或富集通路方面的跨平台一致性与处理效应大小呈线性相关(R²约为0.8)。此外,一致性还受转录本丰度和MOA的生物学复杂性影响。通过定量PCR评估,在DEG验证方面RNA-seq优于微阵列(93%对75%),其优势主要源于对低丰度转录本的准确性提高。尽管如此,使用任一平台数据开发的预测MOA的分类器表现相似。因此,所研究的终点及其生物学复杂性、转录本丰度和基因组应用是转录组学研究以及临床和监管决策中的重要因素。