Suppr超能文献

β-肾上腺素能受体重分布损害衰竭心肌细胞中的 NO/cGMP/PDE2 信号转导。

β-Adrenoceptor redistribution impairs NO/cGMP/PDE2 signalling in failing cardiomyocytes.

机构信息

Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith Hospital, London, United Kingdom.

Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.

出版信息

Elife. 2020 Mar 31;9:e52221. doi: 10.7554/eLife.52221.

Abstract

Cardiomyocyte β-adrenoceptors (β-ARs) coupled to soluble guanylyl cyclase (sGC)-dependent production of the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) have been shown to protect from heart failure. However, the exact localization of these receptors to fine membrane structures and subcellular compartmentation of β-AR/cGMP signals underpinning this protection in health and disease remain elusive. Here, we used a Förster Resonance Energy Transfer (FRET)-based cGMP biosensor combined with scanning ion conductance microscopy (SICM) to show that functional β-ARs are mostly confined to the T-tubules of healthy rat cardiomyocytes. Heart failure, induced via myocardial infarction, causes a decrease of the cGMP levels generated by these receptors and a change of subcellular cGMP compartmentation. Furthermore, attenuated cGMP signals led to impaired phosphodiesterase two dependent negative cGMP-to-cAMP cross-talk. In conclusion, topographic and functional reorganization of the β-AR/cGMP signalosome happens in heart failure and should be considered when designing new therapies acting via this receptor.

摘要

已证实,与可溶性鸟苷酸环化酶(sGC)偶联、可产生第二信使 3',5'-环鸟苷单磷酸(cGMP)的心肌细胞 β-肾上腺素能受体(β-AR)可预防心力衰竭。然而,在健康和疾病中,这些受体在精细膜结构中的确切定位以及 β-AR/cGMP 信号的亚细胞区室化,对于理解这种保护作用仍然难以捉摸。在这里,我们使用基于Förster 共振能量转移(FRET)的 cGMP 生物传感器结合扫描离子电导显微镜(SICM),显示健康大鼠心肌细胞中的功能性 β-AR 主要局限于 T 小管。心肌梗死引起的心力衰竭导致这些受体产生的 cGMP 水平降低,并改变了 cGMP 的亚细胞区室化。此外,减弱的 cGMP 信号导致依赖磷酸二酯酶 2 的负 cGMP-cAMP 交叉对话受损。总之,心力衰竭时β-AR/cGMP 信号转导体发生了拓扑和功能重组,在设计通过该受体发挥作用的新疗法时应考虑到这一点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bde/7138611/929a9eabe80b/elife-52221-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验