Suppr超能文献

心钠肽受体 1 和 2 的亚膜定位不同,将其信号分隔到 cGMP。

Distinct submembrane localisation compartmentalises cardiac NPR1 and NPR2 signalling to cGMP.

机构信息

Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martnistr. 52, D-20246, Hamburg, Germany.

DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martnistr. 52, D-20246, Hamburg, Germany.

出版信息

Nat Commun. 2018 Jun 22;9(1):2446. doi: 10.1038/s41467-018-04891-5.

Abstract

Natriuretic peptides (NPs) are important hormones that regulate multiple cellular functions including cardiovascular physiology. In the heart, two natriuretic peptide receptors NPR1 and NPR2 act as membrane guanylyl cyclases to produce 3',5'-cyclic guanosine monophosphate (cGMP). Although both receptors protect from cardiac hypertrophy, their effects on contractility are markedly different, from little effect (NPR1) to pronounced negative inotropic and positive lusitropic responses (NPR2) with unclear underlying mechanisms. Here we use a scanning ion conductance microscopy (SICM) approach combined with Förster resonance energy transfer (FRET)-based cGMP biosensors to show that whereas NPR2 is uniformly localised on the cardiomyocyte membrane, functional NPR1 receptors are found exclusively in membrane invaginations called transverse (T)-tubules. This leads to far-reaching CNP/NPR2/cGMP signals, whereas ANP/NPR1/cGMP signals are highly confined to T-tubular microdomains by local pools of phosphodiesterase 2. This provides a previously unrecognised molecular basis for clearly distinct functional effects engaged by different cGMP producing membrane receptors.

摘要

利钠肽(NPs)是调节多种细胞功能的重要激素,包括心血管生理学。在心脏中,两种利钠肽受体 NPR1 和 NPR2 作为膜鸟苷酸环化酶产生 3',5'-环鸟苷单磷酸(cGMP)。尽管这两种受体都能防止心肌肥厚,但它们对收缩性的影响却大不相同,从几乎没有影响(NPR1)到明显的负性变力和正性变时反应(NPR2),其潜在机制尚不清楚。在这里,我们使用扫描离子电导显微镜(SICM)方法结合基于Förster 共振能量转移(FRET)的 cGMP 生物传感器,表明尽管 NPR2 在心肌细胞膜上均匀定位,但功能性 NPR1 受体仅存在于称为横管(T)-小管的膜凹陷中。这导致了广泛的 CNP/NPR2/cGMP 信号,而 ANP/NPR1/cGMP 信号则通过局部磷酸二酯酶 2 池高度局限于 T-管状微区。这为不同的 cGMP 产生膜受体所涉及的明显不同的功能效应提供了一个以前未被认识的分子基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53ab/6014982/84eef7521808/41467_2018_4891_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验