Suppr超能文献

膜弯曲和运输中的生物物理力。

Biophysical forces in membrane bending and traffic.

机构信息

Department of Biomedical Engineering, 107 W. Dean Keeton St., C0800, Austin, TX, 78712, USA.

Department of Biomedical Engineering, 107 W. Dean Keeton St., C0800, Austin, TX, 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Norman Hackerman Building, 100 East 24th St., NHB 4500, Austin, TX, 78712, USA.

出版信息

Curr Opin Cell Biol. 2020 Aug;65:72-77. doi: 10.1016/j.ceb.2020.02.017. Epub 2020 Mar 28.

Abstract

Intracellular trafficking requires extensive changes in membrane morphology. Cells use several distinct molecular factors and physical cues to remodel membranes. Here, we highlight recent advances in identifying the biophysical mechanisms of membrane curvature generation. In particular, we focus on the cooperation of molecular and physical drivers of membrane bending during three stages of vesiculation: budding, cargo selection, and scission. Taken together, the studies reviewed here emphasize that, rather than a single dominant mechanism, several mechanisms typically work in parallel during each step of membrane remodeling. Important challenges for the future of this field are to understand how multiple mechanisms work together synergistically and how a series of stochastic events can be combined to achieve a deterministic result-assembly of the trafficking vesicle.

摘要

细胞内运输需要膜形态的广泛改变。细胞使用几种不同的分子因子和物理线索来重塑膜。在这里,我们重点介绍了识别膜曲率产生的生物物理机制的最新进展。特别是,我们专注于分子和物理驱动因素在囊泡形成的三个阶段(出芽、货物选择和分裂)期间对膜弯曲的合作。综上所述,这里回顾的研究强调,在膜重塑的每个步骤中,通常不是单一的主导机制,而是几种机制通常协同工作。该领域未来的重要挑战是了解多种机制如何协同工作,以及一系列随机事件如何组合以实现确定性结果——运输囊泡的组装。

相似文献

1
Biophysical forces in membrane bending and traffic.膜弯曲和运输中的生物物理力。
Curr Opin Cell Biol. 2020 Aug;65:72-77. doi: 10.1016/j.ceb.2020.02.017. Epub 2020 Mar 28.
2
Domes and cones: Adhesion-induced fission of membranes by ESCRT proteins.穹顶和锥体:ESCRT 蛋白诱导的膜黏附分裂。
PLoS Comput Biol. 2018 Aug 21;14(8):e1006422. doi: 10.1371/journal.pcbi.1006422. eCollection 2018 Aug.
4
ESCRTs in membrane sealing.ESCRTs 在膜密封中的作用。
Biochem Soc Trans. 2018 Aug 20;46(4):773-778. doi: 10.1042/BST20170435. Epub 2018 Jun 14.
5
6
The ESCRT machinery: from the plasma membrane to endosomes and back again.内体分选转运复合体机制:从质膜到内体,再循环往复。
Crit Rev Biochem Mol Biol. 2014 May-Jun;49(3):242-61. doi: 10.3109/10409238.2014.881777. Epub 2014 Jan 24.
8
Viral membrane scission.病毒膜的分裂。
Annu Rev Cell Dev Biol. 2013;29:551-69. doi: 10.1146/annurev-cellbio-101011-155838. Epub 2013 May 31.
9
Assembly and disassembly of the ESCRT-III membrane scission complex.ESCRT-III 膜分裂复合物的组装和拆卸。
FEBS Lett. 2011 Oct 20;585(20):3191-6. doi: 10.1016/j.febslet.2011.09.001. Epub 2011 Sep 9.

引用本文的文献

1
Chlamydia trachomatis invasion: a duet of effectors.沙眼衣原体入侵:效应蛋白的二重奏。
Biochem Soc Trans. 2025 Mar 24;0(0):BST20240800. doi: 10.1042/BST20240800.
4
Membrane transformations of fusion and budding.融合和出芽的膜转化。
Nat Commun. 2024 Jan 2;15(1):21. doi: 10.1038/s41467-023-44539-7.
8
Molecular architecture of the human caveolin-1 complex.人类小窝蛋白-1复合物的分子结构
Sci Adv. 2022 May 13;8(19):eabn7232. doi: 10.1126/sciadv.abn7232. Epub 2022 May 11.
10
Editorial overview: Membrane traffic in the time of COVID-19.编辑概述:新冠疫情下的膜泡运输
Curr Opin Cell Biol. 2020 Aug;65:iii-v. doi: 10.1016/j.ceb.2020.09.003.

本文引用的文献

2
6
Crosslinking actin networks produces compressive force.交联肌动蛋白网络会产生压缩力。
Cytoskeleton (Hoboken). 2019 May;76(5):346-354. doi: 10.1002/cm.21552. Epub 2019 Jul 24.
9
The AP2 adaptor enhances clathrin coat stiffness.AP2 衔接蛋白增强网格蛋白包被的刚性。
FEBS J. 2019 Oct;286(20):4074-4085. doi: 10.1111/febs.14961. Epub 2019 Jul 3.
10
Molecular Mechanisms of Membrane Curvature Sensing by a Disordered Protein.无序蛋白感知膜曲率的分子机制。
J Am Chem Soc. 2019 Jul 3;141(26):10361-10371. doi: 10.1021/jacs.9b03927. Epub 2019 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验