Suppr超能文献

穹顶和锥体:ESCRT 蛋白诱导的膜黏附分裂。

Domes and cones: Adhesion-induced fission of membranes by ESCRT proteins.

机构信息

Theory & Bio-Systems Department, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.

Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom.

出版信息

PLoS Comput Biol. 2018 Aug 21;14(8):e1006422. doi: 10.1371/journal.pcbi.1006422. eCollection 2018 Aug.

Abstract

ESCRT proteins participate in the fission step of exocytic membrane budding, by assisting in the closure and scission of the membrane neck that connects the nascent bud to the plasma membrane. However, the precise mechanism by which the proteins achieve this so-called reverse-topology membrane scission remains to be elucidated. One mechanism is described by the dome model, which postulates that ESCRT-III proteins assemble in the shape of a hemispherical dome at the location of the neck, and guide the closure of this neck via membrane-protein adhesion. A different mechanism is described by the flattening cone model, in which the ESCRT-III complex first assembles at the neck in the shape of a cone, which then flattens leading to neck closure. Here, we use the theoretical framework of curvature elasticity and membrane-protein adhesion to quantitatively describe and compare both mechanisms. This comparison shows that the minimal adhesive strength of the membrane-protein interactions required for scission is much lower for cones than for domes, and that the geometric constraints on the shape of the assembly required to induce scission are more stringent for domes than for cones. Finally, we compute for the first time the adhesion-induced constriction forces exerted by the ESCRT assemblies onto the membrane necks. These forces are higher for cones and of the order of 100 pN.

摘要

ESCRT 蛋白参与胞吐膜出芽的裂变步骤,通过协助连接初生芽和质膜的膜颈的闭合和分裂。然而,这些蛋白质实现所谓的反向拓扑膜分裂的确切机制仍有待阐明。一种机制是由穹顶模型描述的,该模型假设 ESCRT-III 蛋白在颈部位置以半球形穹顶的形状组装,并通过膜蛋白粘附引导颈部的闭合。另一种机制是由扁平化锥体模型描述的,其中 ESCRT-III 复合物首先以锥体的形状在颈部组装,然后扁平化导致颈部闭合。在这里,我们使用曲率弹性和膜蛋白粘附的理论框架来定量描述和比较这两种机制。这种比较表明,对于锥体来说,用于分裂的膜蛋白相互作用的最小粘附强度要低得多,而对于穹顶来说,用于诱导分裂的组装形状的几何约束要比锥体更严格。最后,我们首次计算了 ESCRT 组装体施加在膜颈上的粘附诱导收缩力。对于锥体来说,这些力更高,约为 100 pN。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/744f/6118396/bea91cf92f9c/pcbi.1006422.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验