Wu Qiang, Wu Jianqing, Shen Jun, Yong Binbin, Zhou Qingguo
School of Information & Engineering, Lanzhou University, Lanzhou 730000, China.
School of Computing and Information Technology, University ofWollongong, Wollongong 2522, Australia.
Sensors (Basel). 2020 Jul 31;20(15):4291. doi: 10.3390/s20154291.
With smart city infrastructures growing, the Internet of Things (IoT) has been widely used in the intelligent transportation systems (ITS). The traditional adaptive traffic signal control method based on reinforcement learning (RL) has expanded from one intersection to multiple intersections. In this paper, we propose a multi-agent auto communication (MAAC) algorithm, which is an innovative adaptive global traffic light control method based on multi-agent reinforcement learning (MARL) and an auto communication protocol in edge computing architecture. The MAAC algorithm combines multi-agent auto communication protocol with MARL, allowing an agent to communicate the learned strategies with others for achieving global optimization in traffic signal control. In addition, we present a practicable edge computing architecture for industrial deployment on IoT, considering the limitations of the capabilities of network transmission bandwidth. We demonstrate that our algorithm outperforms other methods over 17% in experiments in a real traffic simulation environment.
随着智慧城市基础设施的不断发展,物联网(IoT)已在智能交通系统(ITS)中得到广泛应用。基于强化学习(RL)的传统自适应交通信号控制方法已从单个路口扩展到多个路口。在本文中,我们提出了一种多智能体自动通信(MAAC)算法,它是一种基于多智能体强化学习(MARL)和边缘计算架构中的自动通信协议的创新性自适应全局交通灯控制方法。MAAC算法将多智能体自动通信协议与MARL相结合,使智能体能够与其他智能体交流所学策略,以实现交通信号控制的全局优化。此外,考虑到网络传输带宽能力的限制,我们提出了一种适用于物联网工业部署的可行边缘计算架构。我们证明,在真实交通模拟环境中的实验中,我们的算法比其他方法性能高出17%以上。