Hallam Jonathan M, Rigas Evangelos, Charrett Thomas O H, Tatam Ralph P
Centre for Engineering Photonics, Cranfield University, Cranfield MK43 0AL, Bedfordshire, UK.
Micromachines (Basel). 2020 Mar 27;11(4):351. doi: 10.3390/mi11040351.
A dual beam optical coherence tomography (OCT) instrument has been developed for flow measurement that offers advantages over microscope derived imaging techniques. It requires only a single optical access port, allows simultaneous imaging of the microfluidic channel, does not require fluorescent seed particles, and can provide a millimetre-deep depth-section velocity profile (as opposed to horizontal-section). The dual beam instrument performs rapid re-sampling of particle positions, allowing measurement of faster flows. In this paper, we develop the methods and processes necessary to make 2D quantitative measurements of the flow-velocity using dual beam OCT and present exemplar results in a microfluidic chip. A 2D reference measurement of the Poiseuille flow in a microfluidic channel is presented over a spanwise depth range of 700 m and streamwise length of 1600 m with a spatial resolution of 10 m , at velocities up to 50 m m / s . A measurement of a more complex flow field is also demonstrated in a sloped microfluidic section.
一种用于流量测量的双光束光学相干断层扫描(OCT)仪器已被开发出来,它比基于显微镜的成像技术具有优势。它只需要一个光学接入端口,能够同时对微流体通道进行成像,不需要荧光示踪粒子,并且可以提供毫米级深度剖面的速度分布(与水平剖面相对)。该双光束仪器对粒子位置进行快速重新采样,从而能够测量更快的流速。在本文中,我们开发了使用双光束OCT进行流速二维定量测量所需的方法和流程,并在微流体芯片中展示了示例结果。给出了微流体通道中泊肃叶流在展向深度范围700μm和流向长度1600μm上的二维参考测量结果,空间分辨率为10μm,流速高达50mm/s。还展示了在倾斜微流体部分对更复杂流场的测量。