Suppr超能文献

推断基因组畸变对 Gleason 评分的个性化和种族特异性因果效应:一种深度潜在变量模型

Inferring Personalized and Race-Specific Causal Effects of Genomic Aberrations on Gleason Scores: A Deep Latent Variable Model.

作者信息

Chen Zhong, Edwards Andrea, Hicks Chindo, Zhang Kun

机构信息

Department of Computer Science, Xavier University of Louisiana, New Orleans, LA, United States.

Department of Genetics, LSU Health Sciences Center New Orleans, New Orleans, LA, United States.

出版信息

Front Oncol. 2020 Mar 13;10:272. doi: 10.3389/fonc.2020.00272. eCollection 2020.

Abstract

Extensive research has examined socioeconomic factors influencing prostate cancer (PCa) disparities. However, to what extent molecular and genetic mechanisms may also contribute to these inequalities still remains elusive. Although various , and population studies have originated to address this issue, they are often very costly and time-consuming by nature. In this work, we attempt to explore this problem by a preliminary study, where a joint deep latent variable model (DLVM) is proposed to quantify the personalized and race-specific effects that a genomic aberration may exert on the Gleason Score (GS) of each individual PCa patient. The core of the proposed model is a deep variational autoencoder (VAE) framework, which follows the causal structure of inference with proxies. Extensive experimental results on The Cancer Genome Atlas (TCGA) 270 European-American (EA) and 43 African-American (AA) PCa patients demonstrate that ERG fusions, somatic mutations in SPOP and ATM, and copy number alterations (CNAs) in ERG are the statistically significant genomic factors across all low-, intermediate-, and high-grade PCa that may explain the disparities between these two groups. Moreover, compared to a state-of-the-art deep inference method, our proposed method achieves much higher precision in causal effect inference in terms of the impact of a studied genomic aberration on GS. Further validation on an independent set and the assessment of the genomic-risk scores along with corresponding confidence intervals not only validate our results but also provide valuable insight to the observed racial disparity between these two groups regarding PCa metastasis. The pinpointed significant genomic factors may shed light on the molecular mechanism of cancer disparities in PCa and warrant further investigation.

摘要

大量研究探讨了影响前列腺癌(PCa)差异的社会经济因素。然而,分子和遗传机制在多大程度上也导致了这些不平等现象仍不清楚。尽管已经开展了各种队列研究和人群研究来解决这个问题,但从本质上讲,这些研究往往成本很高且耗时。在这项工作中,我们试图通过一项初步研究来探索这个问题,其中提出了一个联合深度潜在变量模型(DLVM),以量化基因组畸变可能对每个PCa患者的 Gleason评分(GS)产生的个性化和种族特异性影响。所提出模型的核心是一个深度变分自编码器(VAE)框架,它遵循带代理的因果推理结构。对癌症基因组图谱(TCGA)中270名欧美(EA)和43名非裔美国(AA)PCa患者进行的广泛实验结果表明,ERG融合、SPOP和ATM中的体细胞突变以及ERG中的拷贝数改变(CNA)是所有低级别、中级和高级别PCa中具有统计学意义的基因组因素,这些因素可能解释了这两组之间的差异。此外,与一种先进的深度推理方法相比,我们提出的方法在研究的基因组畸变对GS的影响方面,在因果效应推理中实现了更高的精度。在一个独立数据集上的进一步验证以及对基因组风险评分及其相应置信区间的评估,不仅验证了我们的结果,还为观察到的这两组在PCa转移方面的种族差异提供了有价值的见解。确定的重要基因组因素可能有助于揭示PCa中癌症差异的分子机制,值得进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e28b/7082760/e6eeafb9e1b8/fonc-10-00272-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验