Suppr超能文献

一种用于估计基因组改变对 PSA 的个体化和种族特异性因果效应的深度推断和推理框架。

A deep imputation and inference framework for estimating personalized and race-specific causal effects of genomic alterations on PSA.

机构信息

Department of Computer Science, Xavier University of Louisiana, New Orleans, LA 70125, USA.

College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA.

出版信息

J Bioinform Comput Biol. 2021 Aug;19(4):2150016. doi: 10.1142/S0219720021500165. Epub 2021 Jul 2.

Abstract

Prostate Specific Antigen (PSA) level in the serum is one of the most widely used markers in monitoring prostate cancer (PCa) progression, treatment response, and disease relapse. Although significant efforts have been taken to analyze various socioeconomic and cultural factors that contribute to the racial disparities in PCa, limited research has been performed to quantitatively understand how and to what extent molecular alterations may impact differential PSA levels present at varied tumor status between African-American and European-American men. Moreover, missing values among patients add another layer of difficulty in precisely inferring their outcomes. In light of these issues, we propose a data-driven, deep learning-based imputation and inference framework (DIIF). DIIF seamlessly encapsulates two modules: an imputation module driven by a regularized deep autoencoder for imputing critical missing information and an inference module in which two deep variational autoencoders are coupled with a graphical inference model to quantify the personalized and race-specific causal effects. Large-scale empirical studies on the independent sub-cohorts of The Cancer Genome Atlas (TCGA) PCa patients demonstrate the effectiveness of DIIF. We further found that somatic mutations in TP53, ATM, PTEN, FOXA1, and PIK3CA are statistically significant genomic factors that may explain the racial disparities in different PCa features characterized by PSA.

摘要

血清前列腺特异性抗原(PSA)水平是监测前列腺癌(PCa)进展、治疗反应和疾病复发的最广泛使用的标志物之一。尽管已经做出了巨大努力来分析导致 PCa 中种族差异的各种社会经济和文化因素,但对于定量了解分子改变如何以及在多大程度上可能影响非裔美国人和欧洲裔美国人之间不同肿瘤状态下的差异 PSA 水平,研究还很有限。此外,患者中的缺失值给精确推断他们的结果增加了另一层困难。有鉴于此,我们提出了一个数据驱动的、基于深度学习的缺失值插补和推断框架(DIIF)。DIIF 无缝地包含两个模块:一个由正则化深度自动编码器驱动的插补模块,用于插补关键的缺失信息,以及一个推断模块,其中两个深度变分自动编码器与图形推断模型耦合,以量化个性化和种族特异性的因果效应。在独立的癌症基因组图谱(TCGA)PCa 患者子队列上的大规模实证研究证明了 DIIF 的有效性。我们进一步发现,TP53、ATM、PTEN、FOXA1 和 PIK3CA 的体细胞突变是统计学上显著的基因组因素,可能解释了 PSA 特征不同的 PCa 中的种族差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验