Suppr超能文献

撤回文章:氧的量子生理学;从电子到人类大脑中氧化还原信号的进化

RETRACTED ARTICLE: The quantum physiology of oxygen; from electrons to the evolution of redox signaling in the human brain.

作者信息

Bailey Damian Miles

机构信息

Neurovascular Research Laboratory, Alfred Russel Wallace Building, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT UK.

出版信息

Bioelectron Med. 2018 Oct 17;4:13. doi: 10.1186/s42234-018-0014-7. eCollection 2018.

Abstract

Rising atmospheric oxygen (O) levels provided a selective pressure for the evolution of O-dependent micro-organisms that began with the autotrophic eukaryotes. Since these primordial times, the respiring mammalian cell has become entirely dependent on the constancy of electron flow with molecular O serving as the terminal electron acceptor in mitochondrial oxidative phosphorylation. Indeed, the ability to "sense" O and maintain homeostasis is considered one of the most important roles of the central nervous system (CNS) and likely represented a major driving force in the evolution of the human brain. Today, modern humans have evolved with an oversized brain committed to a continually active state and as a consequence, paradoxically vulnerable to failure if the O supply is interrupted. However, our pre-occupation with O, the elixir of life, obscures the fact that it is a gas with a Janus Face, capable of sustaining life in physiologically controlled amounts yet paradoxically deadly to the CNS when in excess. A closer look at its quantum structure reveals precisely why; the triplet ground state diatomic O molecule is paramagnetic and exists in air as a free radical, constrained from reacting aggressively with the brain's organic molecules due to its "spin restriction", a thermodynamic quirk of evolutionary fate. By further exploring O's free radical "quantum quirkiness" including emergent quantum physiological phenomena, our understanding of precisely how the human brain senses O deprivation (hypoxia) and the elaborate redox-signaling defense mechanisms that defend O homeostasis has the potential to offer unique insights into the pathophysiology and treatment of human brain disease.

摘要

不断上升的大气氧气(O)水平为依赖氧气的微生物进化提供了选择压力,这种进化始于自养真核生物。自这些原始时期以来,进行呼吸作用的哺乳动物细胞已完全依赖电子流的稳定性,分子氧作为线粒体氧化磷酸化中的终端电子受体。事实上,“感知”氧气并维持体内平衡的能力被认为是中枢神经系统(CNS)最重要的作用之一,并且可能是人类大脑进化的主要驱动力。如今,现代人类进化出了一个过度发达且持续活跃的大脑,因此,如果氧气供应中断,反而容易出现功能故障。然而,我们对氧气这种生命灵丹妙药的过度关注掩盖了一个事实,即它是一种具有两面性的气体,在生理控制的量下能够维持生命,但过量时却对中枢神经系统具有致命性。仔细观察其量子结构就能确切地明白原因;三重态基态双原子氧分子是顺磁性的,在空气中以自由基形式存在,由于其“自旋限制”,即进化命运的一种热力学特性,使其无法与大脑的有机分子发生剧烈反应。通过进一步探索氧气的自由基“量子特性”,包括新出现的量子生理现象,我们对人类大脑如何精确感知氧气剥夺(缺氧)以及维持氧气稳态的复杂氧化还原信号防御机制的理解,有可能为人类脑部疾病的病理生理学和治疗提供独特的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验