Suppr超能文献

[自由基与抗氧化剂:人体生理学、病理学及治疗学方面]

[Free radicals and antioxidants: human physiology, pathology and therapeutic aspects].

作者信息

Sahnoun Z, Jamoussi K, Zeghal K M

机构信息

Laboratoire de Pharmacologie, Faculté de Médecine, Sfax, Tunisie.

出版信息

Therapie. 1997 Jul-Aug;52(4):251-70.

PMID:9437876
Abstract

Oxygen has invaded progressively, and through the ages, an initially anaerobic world. Living organisms had to invent, in the course of evolution, diverse and ingenious defence systems, to survive the toxicity of this element, which was new for them. Strengthened by this experience over billions of years, the present superior organisms, and particularly human species, are thoroughly adapted to 21 per cent of atmospheric oxygen. Nevertheless, the equilibrium is fragile and the menace of oxygen hovers continually. This deleterious potential of oxygen is attributed to the formation, in vivo, of free radicals, a free radical being, by definition, any chemical species possessing one or several mismatched electrons. These free radicals are, in general, very active. They trigger chain reactions able to damage the different constituents of the living organism. Basic oxygen, must be pre-activated to manifest its toxicity. Such an activation can be achieved in two ways: it can be photodynamic, ending mainly in singlet oxygen, it can be reducing, followed by the formation of the anion hydrogen peroxide and of radical hydroxyl; the latter is the most reactive chemical species in the biological world. The reductive process is accelerated in the presence of transition metals, such as iron and copper, and/or specific enzymes (monoxygenase and certain oxydases). This activation takes place in different cellular compartments: mitochondria, microsomes, peroxysomes, cytoplasmic membrane. To this potential toxicity of oxygen the organism opposes different anti-oxidant defence systems. A first group works up the radical chain, inhibiting activation mechanisms. Such a group, as a consequence, warns of the initiation of radical reactions. The second group neutralizes the free radicals already formed and thus stops the chain of propagation. In this group can be found detoxifying enzymes, notably superoxide dismutase and catalase, producing jointly peroxidases, particularly peroxidase glutathions. Such enzymes for the most part have trace elements as cofactors. In this second group can also be found various molecules which act like 'substrate suicide', or as an anti-oxidant shield. Among these molecules, some can act in the lipidic phase, such as tocopherols, carotenoïds and ubiquinones. Other molecules which are lipophobic, mainly ascorbic acid and uric acid, are active in a hydrated environment. In the case of a weakening of such an antioxidant defence or excess production of radicals, a state of oxidative stress occurs. Uncontrolled, these radicals will damage different biological targets: lipids, DNA, proteins. Disturbances of cellular metabolism will occur, unless corrective defences intervene. The identification of these radical phenomena is an obligatory stage. But because of the very short life span of free radicals, identification poses a real analytical problem. However, three approaches are possible: identification of free radicals, either directly by means of paramagnetic electron resonance, or indirectly by identifying some more stable intermediates. evaluation of the traces of radical attack on biological molecules, for example by high performance liquid chromatography, gas-liquid chromatography, colorimetric tests, estimation of the antioxidant status, for example by colorimetric tests, immunoenzymatic methods, high performance liquid chromatography.

摘要

氧气逐渐侵入了一个原本无氧的世界,并历经了漫长的岁月。在进化过程中,生物不得不发明各种巧妙的防御系统,以在这种对它们而言全新的元素的毒性环境中生存下来。经过数十亿年的这种经历,如今的高等生物,尤其是人类,已经完全适应了大气中21%的氧气含量。然而,这种平衡是脆弱的,氧气的威胁始终存在。氧气的这种有害潜力归因于体内自由基的形成,自由基从定义上讲是任何具有一个或几个未配对电子的化学物种。这些自由基通常非常活跃。它们引发能够损害生物体内不同成分的连锁反应。基态氧必须预先激活才能表现出其毒性。这种激活可以通过两种方式实现:它可以是光动力学的,主要产生单线态氧;它也可以是还原过程,随后形成过氧化氢阴离子和羟基自由基;后者是生物界中反应性最强的化学物种。在过渡金属如铁和铜以及/或特定酶(单加氧酶和某些氧化酶)存在的情况下,还原过程会加速。这种激活发生在不同的细胞区室:线粒体、微粒体、过氧化物酶体、细胞质膜。针对氧气的这种潜在毒性,生物体有不同的抗氧化防御系统。第一组作用于自由基链,抑制激活机制。因此,这一组会对自由基反应的引发发出警告。第二组中和已经形成的自由基,从而停止传播链。在这一组中可以找到解毒酶,特别是超氧化物歧化酶和过氧化氢酶,它们共同产生过氧化物酶,特别是谷胱甘肽过氧化物酶。这些酶大多以微量元素作为辅因子。在这第二组中还可以找到各种分子,它们的作用类似于“底物自杀”,或者作为抗氧化盾牌。在这些分子中,一些可以在脂质相中起作用,如生育酚、类胡萝卜素和泛醌。其他疏水性分子,主要是抗坏血酸和尿酸,在水合环境中具有活性。如果这种抗氧化防御减弱或自由基产生过多,就会出现氧化应激状态。如果不加以控制,这些自由基将损害不同的生物靶点:脂质、DNA、蛋白质。除非有纠正性防御措施介入,否则细胞代谢将发生紊乱。识别这些自由基现象是一个必经阶段。但由于自由基的寿命非常短,识别带来了一个实际的分析问题。然而,有三种方法是可行的:直接通过顺磁共振识别自由基,或通过识别一些更稳定的中间体间接识别;评估自由基对生物分子攻击的痕迹,例如通过高效液相色谱法、气液色谱法、比色试验;评估抗氧化状态,例如通过比色试验、免疫酶法、高效液相色谱法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验