Suppr超能文献

基于局部二值模式(LBP)和二维伽柏(Gabor)小波变换的人脸图像特征提取

Feature extraction of face image based on LBP and 2-D Gabor wavelet transform.

作者信息

Zhang Qian, Li Hai Gang, Li Ming, Ding Lei

机构信息

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China.

出版信息

Math Biosci Eng. 2019 Dec 5;17(2):1578-1592. doi: 10.3934/mbe.2020082.

Abstract

Affected by illumination, gesture, expression and other factor's variation, face image pattern is easy to be changed, so it is important to find a robust data representation for the correct classification of face pattern. In this paper, a face image recognition algorithm based on 2-D Gabor wavelet transform and Local Binary Pattern (LBP) is proposed. LBP is a local describe operator, which is invariant against illumination variation. 2-D Gabor wavelet transform have the invariant property against pose and expression variation. Experimental results show that the large scale 2-D Gabor wavelet representation could get good classification accuracy. Using LBP to describe 2-D Gabor wavelet representation of face image, together with image block, histogram statistics, PCA dimensionality reduction, nearestneighbors classification, we finally find this algorithm can get a better classification performance in different scales and directions.

摘要

受光照、姿态、表情等因素变化的影响,人脸图像模式容易发生改变,因此找到一种鲁棒的数据表示方法对于正确分类人脸模式至关重要。本文提出了一种基于二维伽柏小波变换和局部二值模式(LBP)的人脸图像识别算法。LBP是一种局部描述算子,它对光照变化具有不变性。二维伽柏小波变换对姿态和表情变化具有不变性。实验结果表明,大规模二维伽柏小波表示能够获得良好的分类准确率。利用LBP描述人脸图像的二维伽柏小波表示,结合图像分块、直方图统计、主成分分析降维、最近邻分类,最终发现该算法在不同尺度和方向上能够获得更好的分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验