Suppr超能文献

用于荧光显微镜成像的 3D 高分辨率生成式深度学习网络。

3D high resolution generative deep-learning network for fluorescence microscopy imaging.

出版信息

Opt Lett. 2020 Apr 1;45(7):1695-1698. doi: 10.1364/OL.387486.

Abstract

Microscopic fluorescence imaging serves as a basic tool in many research areas including biology, medicine, and chemistry. With the help of optical clearing, large volume imaging of a mouse brain and even a whole body has been enabled. However, constrained by the physical principles of optical imaging, volume imaging has to balance imaging resolution and speed. Here, we develop a new, to the best of our knowledge, 3D deep learning network based on a dual generative adversarial network (dual-GAN) framework for recovering high-resolution (HR) volume images from high speed acquired low-resolution (LR) volume images. The proposed method does not require a precise image registration process and meanwhile guarantees the predicted HR volume image faithful to its corresponding LR volume image. The results demonstrated that our method can recover ${20} {\times} /1.0\text-{\rm NA}$20×/1.0-NA volume images from coarsely registered ${5} {\times} /0.16\text-{\rm NA}$5×/0.16-NA volume images collected by light-sheet microscopy. This method would provide great potential in applications which require high resolution volume imaging.

摘要

微观荧光成像是生物学、医学和化学等许多研究领域的基本工具。借助光学透明化技术,已经能够对老鼠大脑甚至整个身体进行大容量成像。然而,受光学成像物理原理的限制,容积成像是在成像分辨率和速度之间进行权衡。在这里,我们开发了一种新的、据我们所知的基于双生成对抗网络(dual-GAN)框架的 3D 深度学习网络,用于从高速采集的低分辨率(LR)容积图像中恢复高分辨率(HR)容积图像。该方法不需要精确的图像配准过程,同时保证预测的 HR 容积图像与其对应的 LR 容积图像忠实对应。结果表明,我们的方法可以从通过光片显微镜采集的粗略配准的 ${5} {\times} /0.16\text-{\rm NA}$5×/0.16-NA 容积图像中恢复出 ${20} {\times} /1.0\text-{\rm NA}$20×/1.0-NA 容积图像。该方法在需要高分辨率容积成像的应用中具有很大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验