Opt Express. 2020 Sep 28;28(20):30234-30247. doi: 10.1364/OE.399542.
Though three-dimensional (3D) fluorescence microscopy has been an essential tool for modern life science research, the light scattering by biological specimens fundamentally prevents its more widespread applications in live imaging. We hereby report a deep-learning approach, termed ScatNet, that enables reversion of 3D fluorescence microscopy from high-resolution targets to low-quality, light-scattered measurements, thereby allowing restoration for a blurred and light-scattered 3D image of deep tissue. Our approach can computationally extend the imaging depth for current 3D fluorescence microscopes, without the addition of complicated optics. Combining ScatNet approach with cutting-edge light-sheet fluorescence microscopy (LSFM), we demonstrate the image restoration of cell nuclei in the deep layer of live Drosophilamelanogaster embryos at single-cell resolution. Applying our approach to two-photon excitation microscopy, we could improve the signal-to-noise ratio (SNR) and resolution of neurons in mouse brain beyond the photon ballistic region.
虽然三维(3D)荧光显微镜已经成为现代生命科学研究的重要工具,但生物样本的光散射从根本上阻止了它在活体成像中的更广泛应用。我们在此报告了一种深度学习方法,称为 ScatNet,它能够将 3D 荧光显微镜从高分辨率目标转换为低质量、光散射的测量结果,从而实现对深层组织的模糊和光散射 3D 图像的恢复。我们的方法可以在不增加复杂光学器件的情况下,计算上扩展当前 3D 荧光显微镜的成像深度。将 ScatNet 方法与尖端的光片荧光显微镜(LSFM)相结合,我们证明了在单细胞分辨率下对活体 Drosophila melanogaster 胚胎深层细胞核的图像恢复。将我们的方法应用于双光子激发显微镜,我们可以提高小鼠大脑中神经元的信噪比(SNR)和分辨率,超出光子弹道区域。