Wang Xiaowei, Guan Xiaoxiao, Ren Xibiao, Liu Tian, Huang Wei, Cao Juexian, Jin Chuanhong
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
Nanoscale. 2020 Apr 21;12(15):8285-8293. doi: 10.1039/c9nr10144f. Epub 2020 Apr 1.
Structural defects in crystals are generally believed to disrupt the symmetry of the pristine lattice, but sometimes, they can also serve as the constituent elements of new structures if they are arranged in a well-ordered pattern. Herein, choosing 2D transition metal dichalcogenides (TMDCs) as a model system, we successfully fabricated a novel group of 2D materials-MX (M = Mo, W, X = S, Se) via the periodic assembly of chalcogen vacancy lines in their corresponding MX monolayers (such as MoS). Our ab initio calculations further revealed that these monolayer MX materials electronically exhibit quasi-direct narrow band-gap semiconducting characteristics, e.g., E = 0.89 eV for MoS, and show ultra-high phonon-limited room-temperature carrier mobility up to ∼27 000 cm V s for electrons in MoS. The emergence of these novel MX materials expands the existing 2D family and provides new platforms for both fundamental research and practical applications, and the approach via the periodic assembly of ordered defects should also be applicable to other 2D materials.
晶体中的结构缺陷通常被认为会破坏原始晶格的对称性,但有时,如果它们以有序的模式排列,也可以作为新结构的组成元素。在此,我们选择二维过渡金属二硫属化物(TMDCs)作为模型体系,通过在其相应的MX单层(如MoS)中周期性组装硫属空位线,成功制备了一组新型二维材料——MX(M = Mo、W,X = S、Se)。我们的第一性原理计算进一步表明,这些单层MX材料在电子学上表现出准直接窄带隙半导体特性,例如,MoS的E = 0.89 eV,并显示出高达约27000 cm² V⁻¹ s⁻¹的超高声子限制室温载流子迁移率,适用于MoS中的电子。这些新型MX材料的出现扩展了现有的二维材料家族,为基础研究和实际应用提供了新的平台,并且通过有序缺陷的周期性组装方法也应该适用于其他二维材料。