Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials and Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Nationalities University, 18 Liaohe West Road, Dalian, 116600, P. R. China.
Adv Mater. 2018 Mar;30(9). doi: 10.1002/adma.201705221. Epub 2018 Jan 12.
The ultrafast transfer of plasmon-induced hot electrons is considered an effective kinetics process to enhance the photoconversion efficiencies of semiconductors through strong localized surface plasmon resonance (LSPR) of plasmonic nanostructures. Although this classical sensitization approach is widely used in noble-metal-semiconductor systems, it remains unclear in nonmetallic plasmonic heterostructures. Here, by combining ultrafast transient absorption spectroscopy with theoretical simulations, IR-driven transfer of plasmon-induced hot electron in a nonmetallic branched heterostructure is demonstrated, which is fabricated through solvothermal growth of plasmonic W O nanowires (as branches) onto TiO electrospun nanofibers (as backbones). The ultrafast transfer of hot electron from the W O branches to the TiO backbones occurs within a timeframe on the order of 200 fs with very large rate constants ranging from 3.8 × 10 to 5.5 × 10 s . Upon LSPR excitation by low-energy IR photons, the W O /TiO branched heterostructure exhibits obviously enhanced catalytic H generation from ammonia borane compared with that of W O nanowires. Further investigations by finely controlling experimental conditions unambiguously confirm that this plasmon-enhanced catalytic activity arises from the transfer of hot electron rather than from the photothermal effect.
等离子体激元诱导的热电子的超快转移被认为是一种有效的动力学过程,可以通过等离子体纳米结构的强局域表面等离子体共振(LSPR)来提高半导体的光转化效率。虽然这种经典的敏化方法在贵金属-半导体系统中得到了广泛的应用,但在非金属等离子体异质结构中仍不清楚。在这里,通过将超快瞬态吸收光谱与理论模拟相结合,证明了在非贵金属等离子体杂化结构中存在 IR 驱动的等离子体诱导热电子转移,该杂化结构是通过在 TiO 电纺纳米纤维(作为骨架)上溶剂热生长等离子体 WO 纳米线(作为支链)制备的。WO 支链到 TiO 骨架的热电子的超快转移在 200fs 量级的时间范围内发生,具有非常大的速率常数,范围从 3.8×10 到 5.5×10 秒 。在低能 IR 光子的 LSPR 激发下,WO/TiO 支化异质结构表现出明显增强的从氨硼烷的催化 H 生成,与 WO 纳米线相比。通过精细控制实验条件的进一步研究,明确证实这种等离子体增强的催化活性源于热电子的转移,而不是光热效应。