Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA.
Genome Res. 2020 Apr;30(4):566-575. doi: 10.1101/gr.251546.119. Epub 2020 Apr 1.
The regulation of transposable element (TE) activity by small RNAs is a ubiquitous feature of germlines. However, despite the obvious benefits to the host in terms of ensuring the production of viable gametes and maintaining the integrity of the genomes they carry, it remains controversial whether TE regulation evolves adaptively. We examined the emergence and evolutionary dynamics of repressor alleles after -elements invaded the genome in the mid-twentieth century. In many animals including , repressor alleles are produced by transpositional insertions into piRNA clusters, genomic regions encoding the Piwi-interacting RNAs (piRNAs) that regulate TEs. We discovered that ∼94% of recently collected isofemale lines in the Genetic Reference Panel (DGRP) contain at least one element insertion in a piRNA cluster, indicating that repressor alleles are produced by de novo insertion at an exceptional rate. Furthermore, in our sample of approximately 200 genomes, we uncovered no fewer than 80 unique element insertion alleles in at least 15 different piRNA clusters. Finally, we observe no footprint of positive selection on element insertions in piRNA clusters, suggesting that the rapid evolution of piRNA-mediated repression in was driven primarily by mutation. Our results reveal for the first time how the unique genetic architecture of piRNA production, in which numerous piRNA clusters can encode regulatory small RNAs upon transpositional insertion, facilitates the nonadaptive rapid evolution of repression.
转座元件 (TE) 活性受小 RNA 调控是生殖系的普遍特征。然而,尽管这对宿主确保产生有活力的配子和维持其所携带基因组的完整性有明显的好处,但 TE 调控是否适应性进化仍然存在争议。我们研究了 - 元素在 20 世纪中叶入侵基因组后,抑制子等位基因的出现和进化动态。在包括 在内的许多动物中,抑制子等位基因是通过转座插入 piRNA 簇产生的,piRNA 簇是编码调控 TE 的 Piwi 相互作用 RNA (piRNA) 的基因组区域。我们发现,在 遗传参考面板 (DGRP) 中最近收集的约 94%的同系雌株线至少含有一个在 piRNA 簇中的元件插入,这表明抑制子等位基因以异常高的频率通过从头插入产生。此外,在我们大约 200 个基因组的样本中,我们在至少 15 个不同的 piRNA 簇中发现了不少于 80 个独特的元件插入等位基因。最后,我们没有观察到 piRNA 簇中元件插入的正选择的痕迹,这表明 中 piRNA 介导的抑制的快速进化主要是由突变驱动的。我们的研究结果首次揭示了 piRNA 产生的独特遗传结构如何促进抑制的非适应性快速进化,在这种结构中,许多 piRNA 簇可以在转座插入后编码调节性小 RNA。