Suppr超能文献

改善锂负极劣化以提高非水锂-二氧化碳电池的循环性能。

Improvement of lithium anode deterioration for ameliorating cyclabilities of non-aqueous Li-CO batteries.

作者信息

Chen Chih-Jung, Yang Jun-Jie, Chen Chien-Hung, Wei Da-Hua, Hu Shu-Fen, Liu Ru-Shi

机构信息

Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.

出版信息

Nanoscale. 2020 Apr 21;12(15):8385-8396. doi: 10.1039/d0nr00971g. Epub 2020 Apr 2.

Abstract

Herein, ruthenium (Ru) nanoparticles were anchored on carbon nanotubes (Ru/CNTs) functionalized as catalyst cathodes for non-aqueous Li-CO cells. For cycling tests through a low cut-off capacity (100 mA h g), the origin of battery deterioration resulted from the accumulation of LiCO discharging products on catalytic surfaces, identical to the observations in previous studies. However, the Li-CO cells in this work showed a sudden death within several cycles of high cut-off capacity (500 mA h g), and no LiCO residues were investigated on the cathode. In contrast, Li dendrites and passivation materials (LiOH and LiCO) were generated on Li anodes upon cycling at a limited capacity of 500 mA h g, which dominantly contributed to the battery degradation. A Li foil-replacement method was adopted to make the Ru/CNT cathode perform continuous 100 cycles under a cut-off capacity of 500 mA h g. These results indicate that not only LiCO residues blocked on the active sites of the cathode but also Li dendrites and passivation materials produced on the anode caused Li-CO battery deterioration. Moreover, in the present work, a carbon thin film was deposited on Li metal (C/Li) by a sputtering system for suppressing the dendrite formation upon cycling and promoting the defense of the HO attack from the electrolyte disintegration. The Li-CO cell with a Ru/CNT catalyst and a C/Li anode revealed an improved electrochemical stability of 115 cycles at a limited capacity of 500 mA h g. This proto strategy provided a significant research direction focusing on Li anodes for elevating the Li-CO battery durability.

摘要

在此,钌(Ru)纳米颗粒被锚定在功能化的碳纳米管(Ru/CNTs)上,作为非水Li-CO电池的催化阴极。对于通过低截止容量(100 mA h g)的循环测试,电池性能恶化的原因是LiCO放电产物在催化表面的积累,这与先前研究中的观察结果一致。然而,本工作中的Li-CO电池在高截止容量(500 mA h g)的几个循环内突然失效,并且在阴极上未检测到LiCO残留物。相反,在以500 mA h g的有限容量循环时,Li阳极上生成了锂枝晶和钝化材料(LiOH和LiCO),这是导致电池性能退化的主要原因。采用锂箔替代方法,使Ru/CNT阴极在500 mA h g的截止容量下连续循环100次。这些结果表明,不仅阴极活性位点上的LiCO残留物会导致Li-CO电池性能恶化,阳极上产生的锂枝晶和钝化材料也会导致电池性能恶化。此外,在本工作中,通过溅射系统在锂金属(C/Li)上沉积了一层碳薄膜,以抑制循环过程中枝晶的形成,并增强对电解液分解产生的HO攻击的防御能力。具有Ru/CNT催化剂和C/Li阳极的Li-CO电池在500 mA h g的有限容量下表现出115次循环的改善的电化学稳定性。这种原型策略为提高Li-CO电池耐久性的锂阳极研究提供了一个重要的研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验