CEISAM, CNRS UMR 6230, Université de Nantes, Nantes, France.
SpectroMaitrise, CAPACITES SAS, Nantes, France.
Magn Reson Chem. 2020 May;58(5):390-403. doi: 10.1002/mrc.4899. Epub 2019 Jul 8.
Nuclear magnetic resonance (NMR) is a well-known analytical technique for the analysis of complex mixtures. Its quantitative capability makes it ideally suited to metabolomics or lipidomics studies involving large sample collections of complex biological samples. To overcome the ubiquitous limitation of spectral overcrowding when recording 1D NMR spectra on such samples, the acquisition of 2D NMR spectra allows a better separation between overlapped resonances while yielding accurate quantitative data when appropriate analytical protocols are implemented. Moreover, the experiment duration can be considerably reduced by applying fast acquisition methods. Here, we describe the general workflow to acquire fast quantitative 2D NMR spectra in the "omics" context. It is illustrated on three representative and complementary experiments: UF COSY, ZF-TOCSY with nonuniform sampling, and HSQC with nonuniform sampling. After giving some details and recommendations on how to apply this protocol, its implementation in the case of targeted and untargeted metabolomics/lipidomics studies is described.
核磁共振(NMR)是一种分析复杂混合物的知名分析技术。其定量能力使其非常适合涉及大量复杂生物样本的代谢组学或脂质组学研究。为了克服在对这些样本进行一维 NMR 光谱记录时普遍存在的谱图过度拥挤的限制,二维 NMR 光谱的采集允许在重叠共振之间实现更好的分离,同时在实施适当的分析方案时提供准确的定量数据。此外,通过应用快速采集方法可以大大缩短实验时间。在这里,我们描述了在“组学”背景下获取快速定量二维 NMR 光谱的一般工作流程。它通过三个有代表性且互补的实验来说明:UF COSY、具有非均匀采样的 ZF-TOCSY 和具有非均匀采样的 HSQC。在给出有关如何应用此方案的一些细节和建议之后,描述了其在靶向和非靶向代谢组学/脂质组学研究中的实施情况。