Suppr超能文献

重复博弈中零行列式策略的线性代数结构。

Linear algebraic structure of zero-determinant strategies in repeated games.

机构信息

Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan.

出版信息

PLoS One. 2020 Apr 2;15(4):e0230973. doi: 10.1371/journal.pone.0230973. eCollection 2020.

Abstract

Zero-determinant (ZD) strategies, a recently found novel class of strategies in repeated games, has attracted much attention in evolutionary game theory. A ZD strategy unilaterally enforces a linear relation between average payoffs of players. Although existence and evolutional stability of ZD strategies have been studied in simple games, their mathematical properties have not been well-known yet. For example, what happens when more than one players employ ZD strategies have not been clarified. In this paper, we provide a general framework for investigating situations where more than one players employ ZD strategies in terms of linear algebra. First, we theoretically prove that a set of linear relations of average payoffs enforced by ZD strategies always has solutions, which implies that incompatible linear relations are impossible. Second, we prove that linear payoff relations are independent of each other under some conditions. These results hold for general games with public monitoring including perfect-monitoring games. Furthermore, we provide a simple example of a two-player game in which one player can simultaneously enforce two linear relations, that is, simultaneously control her and her opponent's average payoffs. All of these results elucidate general mathematical properties of ZD strategies.

摘要

零行列式(ZD)策略是在重复博弈中发现的一类新的策略,在进化博弈论中引起了广泛关注。ZD 策略单方面强制玩家的平均收益之间存在线性关系。尽管已经在简单博弈中研究了 ZD 策略的存在性和进化稳定性,但它们的数学性质尚未得到很好的了解。例如,当多个玩家采用 ZD 策略时会发生什么情况还不清楚。在本文中,我们提供了一个基于线性代数的研究多个玩家采用 ZD 策略的一般框架。首先,我们从理论上证明了 ZD 策略强制的平均收益的线性关系总是有解的,这意味着不兼容的线性关系是不可能的。其次,我们证明了在线性收益关系下,在某些条件下,它们是相互独立的。这些结果适用于具有公共监控的一般博弈,包括完全监控博弈。此外,我们还提供了一个简单的二人博弈示例,其中一个玩家可以同时强制执行两个线性关系,即同时控制她和她对手的平均收益。所有这些结果阐明了 ZD 策略的一般数学性质。

相似文献

1
Linear algebraic structure of zero-determinant strategies in repeated games.重复博弈中零行列式策略的线性代数结构。
PLoS One. 2020 Apr 2;15(4):e0230973. doi: 10.1371/journal.pone.0230973. eCollection 2020.
4
Extortion under uncertainty: Zero-determinant strategies in noisy games.不确定情况下的敲诈勒索:嘈杂博弈中的零行列式策略
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052803. doi: 10.1103/PhysRevE.91.052803. Epub 2015 May 11.
5
Zero-determinant strategies in finitely repeated games.有限重复博弈中的零行列式策略。
J Theor Biol. 2018 Feb 7;438:61-77. doi: 10.1016/j.jtbi.2017.11.002. Epub 2017 Nov 14.
6
From extortion to generosity, evolution in the Iterated Prisoner's Dilemma.从敲诈勒索到慷慨大方,重复囚徒困境中的进化。
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15348-53. doi: 10.1073/pnas.1306246110. Epub 2013 Sep 3.

引用本文的文献

本文引用的文献

2
Partners and rivals in direct reciprocity.直接互惠的伙伴和对手。
Nat Hum Behav. 2018 Jul;2(7):469-477. doi: 10.1038/s41562-018-0320-9. Epub 2018 Mar 19.
3
Seven rules to avoid the tragedy of the commons.避免公地悲剧的七条法则。
J Theor Biol. 2018 Jul 14;449:94-102. doi: 10.1016/j.jtbi.2018.04.027. Epub 2018 Apr 17.
4
Zero-determinant strategies in finitely repeated games.有限重复博弈中的零行列式策略。
J Theor Biol. 2018 Feb 7;438:61-77. doi: 10.1016/j.jtbi.2017.11.002. Epub 2017 Nov 14.
5
Memory- strategies of direct reciprocity.直接互惠的记忆策略。
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4715-4720. doi: 10.1073/pnas.1621239114. Epub 2017 Apr 18.
7
Autocratic strategies for iterated games with arbitrary action spaces.具有任意行动空间的重复博弈的独裁策略。
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3573-8. doi: 10.1073/pnas.1520163113. Epub 2016 Mar 14.
10
Extortion under uncertainty: Zero-determinant strategies in noisy games.不确定情况下的敲诈勒索:嘈杂博弈中的零行列式策略
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052803. doi: 10.1103/PhysRevE.91.052803. Epub 2015 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验