Ueda Masahiko
Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan.
R Soc Open Sci. 2021 May 26;8(5):202186. doi: 10.1098/rsos.202186.
Repeated games have provided an explanation of how mutual cooperation can be achieved even if defection is more favourable in a one-shot game in the Prisoner's Dilemma situation. Recently found zero-determinant (ZD) strategies have substantially been investigated in evolutionary game theory. The original memory-one ZD strategies unilaterally enforce linear relationships between average pay-offs of players. Here, we extend the concept of ZD strategies to memory-two strategies in repeated games. Memory-two ZD strategies unilaterally enforce linear relationships between correlation functions of pay-offs and pay-offs of the previous round. Examples of memory-two ZD strategy in the repeated Prisoner's Dilemma game are provided, some of which generalize the tit-for-tat strategy to a memory-two case. Extension of ZD strategies to memory- case with ≥ ~2 is also straightforward.
重复博弈为即使在囚徒困境情形下一次性博弈中背叛更有利时如何实现相互合作提供了解释。近期发现的零行列式(ZD)策略在进化博弈论中得到了大量研究。最初的记忆一型ZD策略单方面强制玩家平均收益之间的线性关系。在此,我们将ZD策略的概念扩展到重复博弈中的记忆二型策略。记忆二型ZD策略单方面强制收益的相关函数与上一轮收益之间的线性关系。给出了重复囚徒困境博弈中记忆二型ZD策略的例子,其中一些将针锋相对策略推广到了记忆二型情形。将ZD策略扩展到记忆(m\geq2)的情形也很简单。