Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
Department of Orthopedic Surgery, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, 25, Simgok-ro 100beon-gil, Seo-gu, Incheon 22711, Republic of Korea.
Int J Pharm. 2020 May 15;581:119248. doi: 10.1016/j.ijpharm.2020.119248. Epub 2020 Mar 30.
An ideal scaffold for bone tissue engineering should have chondroinductive, biodegradable, and biocompatible properties, as well as the ability to absorb and slowly release the biological molecules. In order to develop such a system to support bone tissue regeneration, in the present study, we developed a three-dimensional poly(L-lactic-co-glycolic acid) (PLGA)/Polycaprolactone (PCL) nanohybrid scaffold embedded with PLGA macroparticles (MPs) conjugated with TGF-β3 for the growth and chondrogenic differentiation of human mesenchymal stem cells (hMSCs). First, a microfluidic device was used to fabricate porous PLGA MPs with the sizes ranging from 10 to 50 µm. Next, the PLGA MPs were loaded with TGF-β3, mixed with PCL solution, and then electrospun to obtain PLGA-TGF-β3 MPs/PCL nanohybrid scaffold. Our results demonstrated that PLGA MPs fabricated using a microfluidic-based approach exhibited enhanced conjugation of TGF-β3 with over 80% loading efficiency and sustained release of TGF-β3. Furthermore, the results of glycosaminoglycan (GAG) content measurement and Safranin O staining revealed that the PLGA-TGF-β3 MPs and PLGA-TGF-β3 MPs/PCL nanohybrid scaffold can promote the proliferation and chondrogenic differentiation of hMSCs in vitro. Therefore, the PLGA-TGF-β3 MPs/PCL nanohybrid scaffold could pave the way for cartilage regeneration and have wide applications in regenerative medicine.
用于骨组织工程的理想支架应具有软骨诱导、可生物降解和生物相容性,以及吸收和缓慢释放生物分子的能力。为了开发支持骨组织再生的这样一个系统,在本研究中,我们开发了一种三维聚(L-丙交酯-共-乙交酯)(PLGA)/聚己内酯(PCL)纳米杂化支架,其中嵌入了与 TGF-β3 缀合的 PLGA 大分子(MPs),用于人骨髓间充质干细胞(hMSCs)的生长和软骨分化。首先,使用微流控装置制造尺寸在 10 到 50 μm 之间的多孔 PLGA MPs。接下来,将 PLGA MPs 负载 TGF-β3,与 PCL 溶液混合,然后进行电纺以获得 PLGA-TGF-β3 MPs/PCL 纳米杂化支架。我们的结果表明,使用基于微流控的方法制造的 PLGA MPs 表现出增强的 TGF-β3 缀合,具有超过 80%的载药效率和 TGF-β3 的持续释放。此外,糖胺聚糖(GAG)含量测量和番红 O 染色的结果表明,PLGA-TGF-β3 MPs 和 PLGA-TGF-β3 MPs/PCL 纳米杂化支架可以促进 hMSCs 的体外增殖和软骨分化。因此,PLGA-TGF-β3 MPs/PCL 纳米杂化支架可以为软骨再生铺平道路,并在再生医学中有广泛的应用。