ORD, National Health and Environmental Effects Research Laboratory, ISTD, US Environmental Protection Agency, Research Triangle Park, NC, USA.
ORISE, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
Inhal Toxicol. 2020 Feb;32(3):97-109. doi: 10.1080/08958378.2020.1742818. Epub 2020 Apr 2.
To quantify metabolism, a physiologically based pharmacokinetic (PBPK) model for a volatile compound can be calibrated with the closed chamber (i.e. vapor uptake) inhalation data. Here, we introduce global optimization as a novel component of the predictive process and use it to illustrate a procedure for metabolic parameter estimation. Male F344 rats were exposed in vapor uptake chambers to initial concentrations of 100, 500, 1000, and 3000 ppm chloroform. Chamber time-course data from these experiments, in combination with optimization using a chemical-specific PBPK model, were used to estimate Michaelis-Menten metabolic constants. Matlab simulation software was used to integrate the mass balance equations and to perform the global optimizations using MEIGO (MEtaheuristics for systems biology and bIoinformatics Global Optimization - Version 64 bit, R2016A), a toolbox written for Matlab®. The cost function used the chamber time-course data and least squares to minimize the difference between data and simulation values. The final values estimated for (maximum metabolic rate) and (affinity constant) were 1.2 mg/h and a range between 0.0005 and 0.6 mg/L, respectively. Also, cost function plots were used to analyze the dose-dependent capacity to estimate and within the experimental range used. Sensitivity analysis was used to assess identifiability for both parameters and show these kinetic data may not be sufficient to identify . In summary, this work should help toxicologists interested in optimization techniques understand the overall process employed when calibrating metabolic parameters in a PBPK model with inhalation data.
为了量化代谢,挥发性化合物的基于生理学的药代动力学(PBPK)模型可以用封闭室(即蒸气摄取)吸入数据进行校准。在这里,我们引入全局优化作为预测过程的一个新组件,并使用它来说明代谢参数估计的过程。雄性 F344 大鼠在蒸气摄取室中以 100、500、1000 和 3000 ppm 的氯仿初始浓度暴露。这些实验的腔室时间过程数据,结合使用特定于化学的 PBPK 模型进行的优化,用于估计米氏代谢常数。Matlab 模拟软件用于整合质量平衡方程,并使用 MEIGO(用于系统生物学和生物信息学全局优化的元启发式 - 64 位版本,R2016A)进行全局优化,MEIGO 是一个专为 Matlab®编写的工具箱。成本函数使用腔室时间过程数据和最小二乘法来最小化数据和模拟值之间的差异。估计的 (最大代谢率)和 (亲和力常数)的最终值分别为 1.2 mg/h 和 0.0005 至 0.6 mg/L 之间的范围。此外,成本函数图还用于分析在使用的实验范围内估计 和 的剂量依赖性能力。敏感性分析用于评估这两个参数的可识别性,并表明这些动力学数据可能不足以识别 。总之,这项工作应该有助于对优化技术感兴趣的毒理学家了解在使用吸入数据校准 PBPK 模型中的代谢参数时所采用的总体过程。