Suppr超能文献

基准测试大型动力学模型参数估计中的优化方法。

Benchmarking optimization methods for parameter estimation in large kinetic models.

机构信息

Bioprocess Engineering Group, IIM-CSIC, Vigo, Spain.

Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.

出版信息

Bioinformatics. 2019 Mar 1;35(5):830-838. doi: 10.1093/bioinformatics/bty736.

Abstract

MOTIVATION

Kinetic models contain unknown parameters that are estimated by optimizing the fit to experimental data. This task can be computationally challenging due to the presence of local optima and ill-conditioning. While a variety of optimization methods have been suggested to surmount these issues, it is difficult to choose the best one for a given problem a priori. A systematic comparison of parameter estimation methods for problems with tens to hundreds of optimization variables is currently missing, and smaller studies provided contradictory findings.

RESULTS

We use a collection of benchmarks to evaluate the performance of two families of optimization methods: (i) multi-starts of deterministic local searches and (ii) stochastic global optimization metaheuristics; the latter may be combined with deterministic local searches, leading to hybrid methods. A fair comparison is ensured through a collaborative evaluation and a consideration of multiple performance metrics. We discuss possible evaluation criteria to assess the trade-off between computational efficiency and robustness. Our results show that, thanks to recent advances in the calculation of parametric sensitivities, a multi-start of gradient-based local methods is often a successful strategy, but a better performance can be obtained with a hybrid metaheuristic. The best performer combines a global scatter search metaheuristic with an interior point local method, provided with gradients estimated with adjoint-based sensitivities. We provide an implementation of this method to render it available to the scientific community.

AVAILABILITY AND IMPLEMENTATION

The code to reproduce the results is provided as Supplementary Material and is available at Zenodo https://doi.org/10.5281/zenodo.1304034.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

动力学模型包含未知参数,这些参数通过优化对实验数据的拟合来估计。由于存在局部最优值和病态问题,因此该任务在计算上具有挑战性。虽然已经提出了各种优化方法来克服这些问题,但很难事先为给定问题选择最佳方法。目前缺少针对具有数十到数百个优化变量的问题的参数估计方法的系统比较,而且较小的研究提供了相互矛盾的结果。

结果

我们使用一组基准测试来评估两种优化方法族的性能:(i)确定性局部搜索的多次启动和(ii)随机全局优化元启发式算法;后者可以与确定性局部搜索相结合,从而形成混合方法。通过协作评估和考虑多个性能指标,可以确保公平比较。我们讨论了可能的评估标准,以评估计算效率和稳健性之间的权衡。我们的结果表明,由于最近在参数灵敏度计算方面的进展,基于梯度的局部多启动方法通常是一种成功的策略,但混合元启发式算法可以获得更好的性能。表现最佳的方法是将全局散布搜索元启发式算法与带有基于伴随灵敏度的梯度的内部点局部方法相结合。我们提供了这种方法的实现,以使其可供科学界使用。

可用性和实现

重现结果的代码作为补充材料提供,并可在 Zenodo https://doi.org/10.5281/zenodo.1304034 上获得。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e09/6394396/21d9140cebca/bty736f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验