Suppr超能文献

双层膜中弯曲力与张力之间的相互作用。

Interaction between bending and tension forces in bilayer membranes.

作者信息

Secomb T W

机构信息

Department of Physiology, University of Arizona, Tucson 85724.

出版信息

Biophys J. 1988 Oct;54(4):743-6. doi: 10.1016/S0006-3495(88)83010-8.

Abstract

A theoretical analysis is presented of the bending mechanics of a membrane consisting of two tightly-coupled leaflets, each of which shears and bends readily but strongly resists area changes. Structures of this type have been proposed to model biological membranes such as red blood cell membrane. It is shown that when such a membrane is bent, anisotropic components of resultant membrane tension (shear stresses) are induced, even when the tension in each leaflet is isotropic. The induced shear stresses increase as the square of the membrane curvature, and become significant for moderate curvatures (when the radius of curvature is much larger than the distance between the leaflets). This effect has implications for the analysis of shape and deformation of freely suspended and flowing red blood cells.

摘要

本文对由两个紧密耦合的薄片组成的膜的弯曲力学进行了理论分析,每个薄片都易于剪切和弯曲,但强烈抵抗面积变化。已提出这种类型的结构来模拟生物膜,如红细胞膜。结果表明,当这样的膜弯曲时,即使每个薄片中的张力是各向同性的,也会产生合成膜张力(剪应力)的各向异性分量。诱导剪应力随着膜曲率的平方增加,并且对于中等曲率(当曲率半径远大于薄片之间的距离时)变得显著。这种效应对于分析自由悬浮和流动的红细胞的形状和变形具有重要意义。

相似文献

1
Interaction between bending and tension forces in bilayer membranes.
Biophys J. 1988 Oct;54(4):743-6. doi: 10.1016/S0006-3495(88)83010-8.
2
Bending rigidity of SOPC membranes containing cholesterol.
Biophys J. 1993 Jun;64(6):1967-70. doi: 10.1016/S0006-3495(93)81566-2.
3
A novel micropipet method for measuring the bending modulus of vesicle membranes.
Biophys J. 1994 Aug;67(2):720-7. doi: 10.1016/S0006-3495(94)80530-2.
4
Bending resistance and chemically induced moments in membrane bilayers.
Biophys J. 1974 Dec;14(12):923-31. doi: 10.1016/S0006-3495(74)85959-X.
5
Resting shape and spontaneous membrane curvature of red blood cells.
Math Med Biol. 2005 Mar;22(1):34-52. doi: 10.1093/imammb/dqh021.
6
The influence of anisotropic membrane inclusions on curvature elastic properties of lipid membranes.
J Chem Inf Model. 2005 Nov-Dec;45(6):1652-61. doi: 10.1021/ci050171t.
9
Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility.
Biophys J. 1989 May;55(5):1001-9. doi: 10.1016/S0006-3495(89)82898-X.
10
Shape deformation of lipid membranes by banana-shaped protein rods: Comparison with isotropic inclusions and membrane rupture.
Phys Rev E. 2016 May;93(5):052404. doi: 10.1103/PhysRevE.93.052404. Epub 2016 May 9.

引用本文的文献

1
Red blood cell shape transitions and dynamics in time-dependent capillary flows.
Biophys J. 2022 Jan 4;121(1):23-36. doi: 10.1016/j.bpj.2021.12.009. Epub 2021 Dec 9.
2
A combined experimental and theoretical investigation on cellular blebbing.
Sci Rep. 2017 Nov 30;7(1):16666. doi: 10.1038/s41598-017-16825-0.
3
Mechanics and computational simulation of blood flow in microvessels.
Med Eng Phys. 2011 Sep;33(7):800-4. doi: 10.1016/j.medengphy.2010.09.016. Epub 2010 Oct 29.
4
Red blood cell mechanics and capillary blood rheology.
Cell Biophys. 1991 Jun;18(3):231-51. doi: 10.1007/BF02989816.

本文引用的文献

2
Flow-dependent rheological properties of blood in capillaries.
Microvasc Res. 1987 Jul;34(1):46-58. doi: 10.1016/0026-2862(87)90078-1.
3
Mechanical equilibrium of thick, hollow, liquid membrane cylinders.
Biophys J. 1987 Sep;52(3):391-400. doi: 10.1016/S0006-3495(87)83227-7.
4
Erythrocyte membrane elasticity and viscosity.
Annu Rev Physiol. 1987;49:209-19. doi: 10.1146/annurev.ph.49.030187.001233.
5
Red blood cell shapes as explained on the basis of curvature elasticity.
Biophys J. 1976 Aug;16(8):861-8. doi: 10.1016/S0006-3495(76)85736-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验