Suppr超能文献

含胆固醇的SOPC膜的弯曲刚度。

Bending rigidity of SOPC membranes containing cholesterol.

作者信息

Song J, Waugh R E

机构信息

Department of Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642.

出版信息

Biophys J. 1993 Jun;64(6):1967-70. doi: 10.1016/S0006-3495(93)81566-2.

Abstract

Bilayer membranes in the fluid state exhibit a large resistance to changes in surface area, negligible resistance to surface shear deformation, and a small but finite resistance to bending. The presence of cholesterol in the membrane is known to increase its resistance to area dilation. In this report, a new method for measuring bilayer membrane bending stiffness has been used to investigate the effect of cholesterol on the bending rigidity of SOPC (1,stearoyl-2,oleoyl-phosphatidylcholine) membranes. The curvature elasticity (kc) for membranes saturated with cholesterol was measured to be 3.3 x 10(-19) J, approximately 3-fold larger than that the modulus for cholesterol-free SOPC membrane. These findings are consistent with previous measurements of bending stiffness based on thermal fluctuations, which showed a similar approximately 3-fold increase in the modulus with cholesterol addition (Evans and Rawicz, 1990, Phys. Rev. Lett. 64:2094) and provide further substantiation of the important contribution that cholesterol makes to membrane cohesion and stability.

摘要

处于流体状态的双层膜对表面积变化表现出很大的阻力,对表面剪切变形的阻力可忽略不计,而对弯曲的阻力虽小但有限。已知膜中胆固醇的存在会增加其对面积扩张的阻力。在本报告中,一种测量双层膜弯曲刚度的新方法被用于研究胆固醇对1, 硬脂酰 - 2, 油酰 - 磷脂酰胆碱(SOPC)膜弯曲刚度的影响。测得胆固醇饱和的膜的曲率弹性(kc)为3.3×10⁻¹⁹ J,约为不含胆固醇的SOPC膜模量的3倍。这些发现与先前基于热涨落的弯曲刚度测量结果一致,后者表明添加胆固醇后模量也有类似的约3倍增加(Evans和Rawicz,1990年,《物理评论快报》64:2094),并进一步证实了胆固醇对膜凝聚和稳定性的重要贡献。

相似文献

1
Bending rigidity of SOPC membranes containing cholesterol.
Biophys J. 1993 Jun;64(6):1967-70. doi: 10.1016/S0006-3495(93)81566-2.
2
Bilayer membrane bending stiffness by tether formation from mixed PC-PS lipid vesicles.
J Biomech Eng. 1990 Aug;112(3):235-40. doi: 10.1115/1.2891178.
3
A novel micropipet method for measuring the bending modulus of vesicle membranes.
Biophys J. 1994 Aug;67(2):720-7. doi: 10.1016/S0006-3495(94)80530-2.
4
5
6
Elastic deformation and failure of lipid bilayer membranes containing cholesterol.
Biophys J. 1990 Oct;58(4):997-1009. doi: 10.1016/S0006-3495(90)82444-9.
7
Interaction of the antimicrobial peptide pheromone Plantaricin A with model membranes: implications for a novel mechanism of action.
Biochim Biophys Acta. 2006 Sep;1758(9):1461-74. doi: 10.1016/j.bbamem.2006.03.037. Epub 2006 May 23.
8
Effect of chain length and unsaturation on elasticity of lipid bilayers.
Biophys J. 2000 Jul;79(1):328-39. doi: 10.1016/S0006-3495(00)76295-3.
9
Effect of salicylate on the elasticity, bending stiffness, and strength of SOPC membranes.
Biophys J. 2005 Sep;89(3):1789-801. doi: 10.1529/biophysj.104.054510. Epub 2005 Jun 10.
10
Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility.
Biophys J. 1989 May;55(5):1001-9. doi: 10.1016/S0006-3495(89)82898-X.

引用本文的文献

1
Synthesis Method and High Salt Concentration Can Affect Electrodeformation of GUVs under Strong Pulsed DC Fields.
ACS Omega. 2025 Feb 14;10(7):6427-6436. doi: 10.1021/acsomega.4c06412. eCollection 2025 Feb 25.
2
Enhanced in vivo Stability and Antitumor Efficacy of PEGylated Liposomes of Paclitaxel Palmitate Prodrug.
Int J Nanomedicine. 2024 Nov 9;19:11539-11560. doi: 10.2147/IJN.S488369. eCollection 2024.
3
Nanosecond Pulsed Electric Field (nsPEF): Opening the Biotechnological Pandora's Box.
Int J Mol Sci. 2022 May 31;23(11):6158. doi: 10.3390/ijms23116158.
4
Effects of cholesterol on the size distribution and bending modulus of lipid vesicles.
PLoS One. 2022 Jan 28;17(1):e0263119. doi: 10.1371/journal.pone.0263119. eCollection 2022.
7
Lateral heterogeneity and domain formation in cellular membranes.
Chem Phys Lipids. 2020 Oct;232:104976. doi: 10.1016/j.chemphyslip.2020.104976. Epub 2020 Sep 15.
8
Spontaneous Curvature, Differential Stress, and Bending Modulus of Asymmetric Lipid Membranes.
Biophys J. 2020 Feb 4;118(3):624-642. doi: 10.1016/j.bpj.2019.11.3398. Epub 2019 Dec 18.
9
Cholesterol-tuned liposomal membrane rigidity directs tumor penetration and anti-tumor effect.
Acta Pharm Sin B. 2019 Jul;9(4):858-870. doi: 10.1016/j.apsb.2019.02.010. Epub 2019 Mar 2.
10
The role of dyslipidemia in diabetic retinopathy.
Vision Res. 2017 Oct;139:228-236. doi: 10.1016/j.visres.2017.04.010. Epub 2017 May 26.

本文引用的文献

1
Entropy-driven tension and bending elasticity in condensed-fluid membranes.
Phys Rev Lett. 1990 Apr 23;64(17):2094-2097. doi: 10.1103/PhysRevLett.64.2094.
3
Thermal fluctuations of large cylindrical phospholipid vesicles.
Biophys J. 1984 May;45(5):891-9. doi: 10.1016/S0006-3495(84)84235-6.
5
Mechanical equilibrium of thick, hollow, liquid membrane cylinders.
Biophys J. 1987 Sep;52(3):391-400. doi: 10.1016/S0006-3495(87)83227-7.
6
8
Elastic deformation and failure of lipid bilayer membranes containing cholesterol.
Biophys J. 1990 Oct;58(4):997-1009. doi: 10.1016/S0006-3495(90)82444-9.
9
Bilayer membrane bending stiffness by tether formation from mixed PC-PS lipid vesicles.
J Biomech Eng. 1990 Aug;112(3):235-40. doi: 10.1115/1.2891178.
10
Lipid bilayer and water proton magnetization transfer: effect of cholesterol.
Magn Reson Med. 1991 Mar;18(1):214-23. doi: 10.1002/mrm.1910180122.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验