Suppr超能文献

水质监测和状态分类推理方法的基准测试。

Benchmarking inference methods for water quality monitoring and status classification.

机构信息

Integrative Research Institute on Transformations of Human-Environment Systems, Humboldt-Universität zu Berlin, 10099, Berlin, Germany.

School of Geography and Environmental Sciences, Ulster University, Coleraine, BT52 1SA, UK.

出版信息

Environ Monit Assess. 2020 Apr 2;192(4):261. doi: 10.1007/s10661-020-8223-4.

Abstract

River water quality monitoring at limited temporal resolution can lead to imprecise and inaccurate classification of physicochemical status due to sampling error. Bayesian inference allows for the quantification of this uncertainty, which can assist decision-making. However, implicit assumptions of Bayesian methods can cause further uncertainty in the uncertainty quantification, so-called second-order uncertainty. In this study, and for the first time, we rigorously assessed this second-order uncertainty for inference of common water quality statistics (mean and 95th percentile) based on sub-sampling high-frequency (hourly) total reactive phosphorus (TRP) concentration data from three watersheds. The statistics were inferred with the low-resolution sub-samples using the Bayesian lognormal distribution and bootstrap, frequentist t test, and face-value approach and were compared with those of the high-frequency data as benchmarks. The t test exhibited a high risk of bias in estimating the water quality statistics of interest and corresponding physicochemical status (up to 99% of sub-samples). The Bayesian lognormal model provided a good fit to the high-frequency TRP concentration data and the least biased classification of physicochemical status (< 5% of sub-samples). Our results suggest wide applicability of Bayesian inference for water quality status classification, a new approach for regulatory practice that provides uncertainty information about water quality monitoring and regulatory classification with reduced bias compared to frequentist approaches. Furthermore, the study elucidates sizeable second-order uncertainty due to the choice of statistical model, which could be quantified based on the high-frequency data.

摘要

由于采样误差,有限时间分辨率的河流水质监测可能导致对物理化学状态的分类不精确和不准确。贝叶斯推断允许量化这种不确定性,从而有助于决策。然而,贝叶斯方法的隐含假设会导致不确定性量化中的进一步不确定性,即所谓的二阶不确定性。在这项研究中,我们首次严格评估了这种二阶不确定性,以便根据三个流域的高频(每小时)总反应磷(TRP)浓度数据的子采样推断常见水质统计数据(平均值和第 95 个百分位数)。使用贝叶斯对数正态分布和自举、频率主义 t 检验和面值方法,通过低分辨率子样本推断统计数据,并将其与高频数据进行比较作为基准。t 检验在估计感兴趣的水质统计数据和相应的物理化学状态方面存在很大的偏差风险(高达 99%的子样本)。贝叶斯对数正态模型很好地拟合了高频 TRP 浓度数据,并对物理化学状态进行了分类,偏差最小(<5%的子样本)。我们的研究结果表明,贝叶斯推断在水质状态分类方面具有广泛的适用性,这是一种新的监管实践方法,与频率主义方法相比,它提供了有关水质监测和监管分类的不确定性信息,并且偏差较小。此外,该研究阐明了由于统计模型选择而导致的相当大的二阶不确定性,该不确定性可以基于高频数据进行量化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验