Suppr超能文献

基于贝叶斯推断的活性污泥模型参数不确定性估计:与频率派方法的比较。

Estimation of parameter uncertainty for an activated sludge model using Bayesian inference: a comparison with the frequentist method.

出版信息

Environ Technol. 2014 Aug;35(13-16):1618-29. doi: 10.1080/09593330.2013.876450.

Abstract

The procedure commonly used for the assessment of the parameters included in activated sludge models (ASMs) relies on the estimation of their optimal value within a confidence region (i.e. frequentist inference). Once optimal values are estimated, parameter uncertainty is computed through the covariance matrix. However, alternative approaches based on the consideration of the model parameters as probability distributions (i.e. Bayesian inference), may be of interest. The aim of this work is to apply (and compare) both Bayesian and frequentist inference methods when assessing uncertainty for an ASM-type model, which considers intracellular storage and biomass growth, simultaneously. Practical identifiability was addressed exclusively considering respirometric profiles based on the oxygen uptake rate and with the aid of probabilistic global sensitivity analysis. Parameter uncertainty was thus estimated according to both the Bayesian and frequentist inferential procedures. Results were compared in order to evidence the strengths and weaknesses of both approaches. Since it was demonstrated that Bayesian inference could be reduced to a frequentist approach under particular hypotheses, the former can be considered as a more generalist methodology. Hence, the use of Bayesian inference is encouraged for tackling inferential issues in ASM environments.

摘要

该方法常用于评估活性污泥模型(ASM)中的参数,其依赖于在置信区间内估计参数的最佳值(即频率派推断)。一旦估计出最佳值,就可以通过协方差矩阵计算参数不确定性。然而,基于将模型参数视为概率分布的替代方法(即贝叶斯推断)可能会引起关注。本工作的目的是在评估考虑细胞内储存和生物量生长的 ASM 模型不确定性时,同时应用(和比较)贝叶斯和频率派推断方法。仅考虑基于耗氧率的呼吸测量曲线和概率全局敏感性分析,专门解决实际可识别性问题。根据贝叶斯和频率派推断程序来估计参数不确定性。为了证明这两种方法的优缺点,对结果进行了比较。由于已经证明,在特定假设下,贝叶斯推断可以简化为频率派推断,因此前者可以被认为是一种更具普遍性的方法。因此,在处理 ASM 环境中的推理问题时,鼓励使用贝叶斯推断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验