Suppr超能文献

一种用于从低信噪比透射电子显微镜图像中识别原子的多尺度深度学习模型。

A Multiscale Deep-Learning Model for Atom Identification from Low-Signal-to-Noise-Ratio Transmission Electron Microscopy Images.

作者信息

Lin Yanyu, Yan Zhangyuan, Tsang Chi Shing, Wong Lok Wing, Zheng Xiaodong, Zheng Fangyuan, Zhao Jiong, Chen Ke

机构信息

School of Future Technology South China University of Technology Guangzhou 510641 China.

Department of Applied Physics The Hong Kong Polytechnic University Kowloon Hong Kong China.

出版信息

Small Sci. 2023 Jun 11;3(8):2300031. doi: 10.1002/smsc.202300031. eCollection 2023 Aug.

Abstract

Recent advancements in transmission electron microscopy (TEM) have enabled the study of atomic structures of materials at unprecedented scales as small as tens of picometers (pm). However, accurately detecting atomic positions from TEM images remains a challenging task. Traditional Gaussian fitting and peak-finding algorithms are effective under ideal conditions but perform poorly on images with strong background noise or contamination areas (shown as ultrabright or ultradark contrasts). Moreover, these traditional algorithms require parameter tuning for different magnifications. To overcome these challenges, AtomID-Net is presented, a deep neural network model for atomic detection from multiscale low-SNR experimental images of scanning TEM (scanning transmission electron microscopy (STEM)). The model is trained on real images, which allows the robust and efficient detection of atomic positions, even in the presence of background noise and contamination. The evaluation on a test set of 50 images with a resolution of 800 × 800 yields an average F1-Score of 0.964, which demonstrates significant improvements over existing peak-finding algorithms.

摘要

透射电子显微镜(TEM)的最新进展使得在前所未有的小至几十皮米(pm)的尺度上研究材料的原子结构成为可能。然而,从TEM图像中准确检测原子位置仍然是一项具有挑战性的任务。传统的高斯拟合和峰值查找算法在理想条件下是有效的,但在具有强背景噪声或污染区域(显示为超亮或超暗对比度)的图像上表现不佳。此外,这些传统算法需要针对不同的放大倍数进行参数调整。为了克服这些挑战,提出了AtomID-Net,这是一种用于从扫描TEM(扫描透射电子显微镜(STEM))的多尺度低信噪比实验图像中进行原子检测的深度神经网络模型。该模型在真实图像上进行训练,即使在存在背景噪声和污染的情况下,也能可靠且高效地检测原子位置。在一组50张分辨率为800×800的测试图像上进行评估,平均F1分数为0.964,这表明与现有的峰值查找算法相比有显著改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd0b/11935788/8c87a4dac6a0/SMSC-3-2300031-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验