Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
ACS Synth Biol. 2020 May 15;9(5):1150-1159. doi: 10.1021/acssynbio.0c00019. Epub 2020 Apr 15.
Acrylic acid (AA) is an important industrial chemical used for several applications including superabsorbent polymers and acrylate esters. Here, we report the development of a new biosynthetic pathway for the production of AA from glucose in metabolically engineered through the β-alanine (BA) route. The AA production pathway was partitioned into two modules: an AA forming downstream pathway and a BA forming upstream pathway. We first validated the operation of the downstream pathway and , and then constructed the downstream pathway by introducing efficient enzymes (Act, Acl2, and YciA) screened out of various microbial sources and optimizing the expression levels. For the direct fermentative production of AA from glucose, the downstream pathway was introduced into the BA producing strain. The resulting strain could successfully produce AA from glucose in flask cultivation. AA production was further enhanced by expressing the upstream genes ( and ) under the constitutive BBa_J23100 promoter. Replacement of the native promoter of the gene with the BBa_J23100 promoter in the genome increased AA production to 55.7 mg/L in flask. Fed-batch fermentation of the final engineered strain allowed production of 237 mg/L of AA in 57.5 h, representing the highest AA titer reported to date.
丙烯酸(AA)是一种重要的工业化学品,用于多种应用,包括高吸水性聚合物和丙烯酸酯。在这里,我们通过β-丙氨酸(BA)途径,在代谢工程化的 中报告了一种从葡萄糖生产 AA 的新生物合成途径的开发。AA 生产途径分为两个模块:AA 形成的下游途径和 BA 形成的上游途径。我们首先验证了下游途径的操作 和 ,然后通过引入从各种微生物来源筛选出的高效酶(Act、Acl2 和 YciA)并优化表达水平来构建下游途径。为了从葡萄糖直接发酵生产 AA,将下游途径引入到产生 BA 的 菌株中。在摇瓶培养中,该菌株可以成功地从葡萄糖生产 AA。通过在组成型 BBa_J23100 启动子下表达上游基因( 和 )进一步提高 AA 产量。在基因组中用 BBa_J23100 启动子替换 基因的天然启动子,将 AA 产量提高到 55.7 mg/L。最终工程化菌株的分批补料发酵允许在 57.5 h 内生产 237 mg/L 的 AA,这是迄今为止报道的最高 AA 浓度。