Suppr超能文献

通过定制的阿魏酸脱羧酶突变体在大肠杆菌中直接合成 1,3-丁二烯。

Direct 1,3-butadiene biosynthesis in Escherichia coli via a tailored ferulic acid decarboxylase mutant.

机构信息

Center for Sustainable Resource Science, RIKEN, Yokohama, Japan.

Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan.

出版信息

Nat Commun. 2021 Apr 13;12(1):2195. doi: 10.1038/s41467-021-22504-6.

Abstract

The C4 unsaturated compound 1,3-butadiene is an important monomer in synthetic rubber and engineering plastic production. However, microorganisms cannot directly produce 1,3-butadiene when glucose is used as a renewable carbon source via biological processes. In this study, we construct an artificial metabolic pathway for 1,3-butadiene production from glucose in Escherichia coli by combining the cis,cis-muconic acid (ccMA)-producing pathway together with tailored ferulic acid decarboxylase mutations. The rational design of the substrate-binding site of the enzyme by computational simulations improves ccMA decarboxylation and thus 1,3-butadiene production. We find that changing dissolved oxygen (DO) levels and controlling the pH are important factors for 1,3-butadiene production. Using DO-stat fed-batch fermentation, we produce 2.13 ± 0.17 g L 1,3-butadiene. The results indicate that we can produce unnatural/nonbiological compounds from glucose as a renewable carbon source via a rational enzyme design strategy.

摘要

C4 不饱和化合物 1,3-丁二烯是合成橡胶和工程塑料生产中的重要单体。然而,当葡萄糖作为可再生碳源通过生物过程时,微生物不能直接产生 1,3-丁二烯。在这项研究中,我们通过组合顺式,顺式-粘康酸(ccMA)-产生途径以及定制的阿魏酸脱羧酶突变,在大肠杆菌中构建了从葡萄糖生产 1,3-丁二烯的人工代谢途径。通过计算模拟对酶的底物结合位点进行合理设计,提高了 ccMA 的脱羧作用,从而提高了 1,3-丁二烯的产量。我们发现改变溶解氧(DO)水平和控制 pH 值是 1,3-丁二烯生产的重要因素。使用 DO -stat 补料分批发酵,我们生产了 2.13±0.17 g/L 的 1,3-丁二烯。结果表明,我们可以通过合理的酶设计策略,从葡萄糖等可再生碳源生产非天然/非生物化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d40/8044207/60a53729cf94/41467_2021_22504_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验