Suppr超能文献

基于欠采样 k 空间 DCE-MRI 的示踪剂动力学模型、输入函数和 T1 弛豫时间的联合参数化的随机梯度 Langevin 动力学。

Stochastic Gradient Langevin dynamics for joint parameterization of tracer kinetic models, input functions, and T1 relaxation-times from undersampled k-space DCE-MRI.

机构信息

Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, United Kingdom.

出版信息

Med Image Anal. 2020 May;62:101690. doi: 10.1016/j.media.2020.101690. Epub 2020 Mar 16.

Abstract

Dynamic Contrast Enhanced (DCE) Magnetic Resonance Imaging (MRI) is an important diagnostic technique that can quantify the structure and function of microvasculature processes, using T1 relaxation times and tracer kinetic maps. However, a series of methodological limitations affect both the accuracy and standardisation of the quantified maps, and consequently their diagnostic ability. The main methodological challenge in the quantification of tracer kinetics is a multi-parameter optimization, with correlated parameters that have different scales, which results in local minima particularly when measurements are highly undersampled. This work suggests a novel data driven optimization scheme, based on a variation of the Stochastic Gradient Langevin dynamics (SGLD) Markov chain Monte Carlo algorithm, which combines stochastic gradient descent and Langevin dynamics. The proposed SGDL algorithm avoided local minima and accurately quantified proton density, T1 relaxation times and tracer kinetics. Joint direct parameterization significantly benefited the quantification of proton density, T1 relaxation times, and the selection of a suitable tracer kinetic model per tissue type. Model based arterial and portal vein input functions were automatically determined during the joint direct parameterization. Observations made on simulated fully and highly undersampled liver DCE MRI data were confirmed on acquired clinical data.

摘要

动态对比增强(DCE)磁共振成像(MRI)是一种重要的诊断技术,可使用 T1 弛豫时间和示踪剂动力学图来量化微血管过程的结构和功能。然而,一系列方法学限制影响了量化图的准确性和标准化,进而影响了其诊断能力。示踪剂动力学定量的主要方法学挑战是多参数优化,其中相关参数具有不同的尺度,这导致在测量高度欠采样时特别容易出现局部最小值。这项工作提出了一种基于随机梯度 Langevin动力学(SGLD)马尔可夫链蒙特卡罗算法的新型数据驱动优化方案,该算法结合了随机梯度下降和 Langevin动力学。所提出的 SGDL 算法避免了局部最小值,并准确地量化了质子密度、T1 弛豫时间和示踪剂动力学。联合直接参数化显著有利于质子密度、T1 弛豫时间的量化,以及针对每种组织类型选择合适的示踪剂动力学模型。在联合直接参数化过程中,自动确定了基于模型的动脉和门静脉输入函数。在模拟的完全和高度欠采样肝脏 DCE MRI 数据上的观察结果在获得的临床数据上得到了证实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验