Suppr超能文献

进一步开发 12 项饮食失调问卷简表:确定用于筛查目的的分界值。

Further development of the 12-item EDE-QS: identifying a cut-off for screening purposes.

机构信息

School of Medicine, Western Sydney University, Sydney, Australia.

Centre for Emotional Health, Department of Psychology, Macquarie University, Sydney, Australia.

出版信息

BMC Psychiatry. 2020 Apr 3;20(1):146. doi: 10.1186/s12888-020-02565-5.

Abstract

BACKGROUND

The Eating Disorder Examination - Questionnaire Short (EDE-QS) was developed as a 12-item version of the Eating Disorder Examination Questionnaire (EDE-Q) with a 4-point response scale that assesses eating disorder (ED) symptoms over the preceding 7 days. It has demonstrated good psychometric properties at initial testing. The purpose of this brief report is to determine a threshold score that could be used in screening for probable ED cases in community settings.

METHODS

Data collected from Gideon et al. (2016) were re-analyzed. In their study, 559 participants (80.86% female; 9.66% self-reported ED diagnosis) completed the EDE-Q, EDE-QS, SCOFF, and Clinical Impairment Assessment (CIA). Discriminatory power was compared between ED instruments using receiver operating characteristic (ROC) curve analyses.

RESULTS

A score of 15 emerged as the threshold that ensured the best trade-off between sensitivity (.83) and specificity (.85), and good positive predictive value (.37) for the EDE-QS, with discriminatory power comparable to other ED instruments.

CONCLUSION

The EDE-QS appears to be an instrument with good discriminatory power that could be used for ED screening purposes.

摘要

背景

饮食障碍问卷-短表(EDE-QS)是作为饮食障碍问卷(EDE-Q)的 12 项版本开发的,采用 4 点反应量表,评估过去 7 天的饮食障碍(ED)症状。在最初的测试中,它已经表现出了良好的心理测量学特性。本简要报告的目的是确定一个可以在社区环境中用于筛查可能的 ED 病例的阈值分数。

方法

重新分析了 Gideon 等人(2016 年)收集的数据。在他们的研究中,559 名参与者(80.86%为女性;9.66%自我报告 ED 诊断)完成了 EDE-Q、EDE-QS、SCOFF 和临床损伤评估(CIA)。使用受试者工作特征(ROC)曲线分析比较了 ED 工具之间的区分能力。

结果

15 分是 EDE-QS 的最佳阈值分数,它在敏感性(0.83)和特异性(0.85)之间实现了良好的权衡,EDE-QS 的阳性预测值(0.37)也较好,其区分能力与其他 ED 工具相当。

结论

EDE-QS 似乎是一种具有良好区分能力的工具,可用于 ED 筛查目的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd8/7118929/90c2ef856985/12888_2020_2565_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验