Suppr超能文献

铁摄取调节剂为嗜酸生物适应酸性生态系统提供了新策略。

Ferric Uptake Regulator Provides a New Strategy for Acidophile Adaptation to Acidic Ecosystems.

机构信息

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China

出版信息

Appl Environ Microbiol. 2020 May 19;86(11). doi: 10.1128/AEM.00268-20.

Abstract

Acidophiles play a dominant role in driving elemental cycling in natural acid mine drainage (AMD) habitats and exhibit important application value in bioleaching and bioremediation. Acidity is an inevitable environmental stress and a key factor that affects the survival of acidophiles in their acidified natural habitats; however, the regulatory strategies applied by acidophilic bacteria to withstand low pH are unclear. We identified the significance of the ferric uptake regulator (Fur) in acidophiles adapting to acidic environments and discovered that Fur is ubiquitous as well as highly conserved in acidophilic bacteria. Mutagenesis of the gene of , a prototypical acidophilic sulfur-oxidizing bacterium found in AMD, revealed that Fur is required for the acid resistance of this acidophilic bacterium. Phenotypic characterization, transcriptome sequencing (RNA-seq), mutagenesis, and biochemical assays indicated that the ferric uptake regulator (AcFur) is involved in extreme acid resistance by regulating the expression of several key genes of certain cellular activities, such as iron transport, biofilm formation, sulfur metabolism, chemotaxis, and flagellar biosynthesis. Finally, a Fur-dependent acid resistance regulatory strategy in was proposed to illustrate the ecological behavior of acidophilic bacteria under low pH. This study provides new insights into the adaptation strategies of acidophiles to AMD ecosystems and will promote the design and development of engineered biological systems for the environmental adaptation of acidophiles. This study advances our understanding of the acid tolerance mechanism of , identifies the key gene responsible for acid resistance, and elucidates the correlation between and acid resistance, thus contributing to an understanding of the ecological behavior of acidophilic bacteria. These findings provide new insights into the acid resistance process in species, thereby promoting the study of the environmental adaptation of acidophilic bacteria and the design of engineered biological systems.

摘要

嗜酸菌在驱动自然酸性矿山排水(AMD)生境中的元素循环中发挥主导作用,并在生物浸出和生物修复中具有重要的应用价值。酸度是一种不可避免的环境胁迫,是影响嗜酸菌在酸化自然栖息地中生存的关键因素;然而,嗜酸菌耐受低 pH 值的调控策略尚不清楚。我们确定了铁摄取调节剂(Fur)在嗜酸菌适应酸性环境中的重要性,并发现 Fur 在嗜酸菌中普遍存在且高度保守。对典型 AMD 嗜酸硫氧化菌的基因进行诱变,揭示了 Fur 是该嗜酸菌耐酸的必需条件。表型特征、转录组测序(RNA-seq)、诱变和生化分析表明,铁摄取调节剂(AcFur)通过调节铁运输、生物膜形成、硫代谢、趋化性和鞭毛生物合成等某些细胞活动的关键基因的表达,参与极端耐酸。最后,提出了一种依赖 Fur 的在极端耐酸中的调控策略,以说明嗜酸菌在低 pH 下的生态行为。本研究为嗜酸菌对 AMD 生态系统的适应策略提供了新的见解,并将促进用于嗜酸菌环境适应的工程生物系统的设计和开发。本研究增进了我们对嗜酸菌对 AMD 生态系统的适应策略的理解,确定了负责耐酸的关键基因,并阐明了与耐酸之间的相关性,从而有助于理解嗜酸菌的生态行为。这些发现为了解 种的耐酸机制提供了新的见解,确定了负责耐酸的关键基因,并阐明了与耐酸之间的相关性,从而有助于理解嗜酸菌的生态行为。这些发现为了解 种的耐酸机制提供了新的见解,确定了负责耐酸的关键基因,并阐明了与耐酸之间的相关性,从而有助于理解嗜酸菌的生态行为。这些发现为了解 种的耐酸机制提供了新的见解,

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19e/7237784/446f8ca5ba0a/AEM.00268-20-f0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验