Wang Zhao-Bao, Li Ya-Qing, Lin Jian-Qun, Pang Xin, Liu Xiang-Mei, Liu Bing-Qiang, Wang Rui, Zhang Cheng-Jia, Wu Yan, Lin Jian-Qiang, Chen Lin-Xu
State Key Laboratory of Microbial Technology, Shandong University Jinan, China.
School of Mathematics, Shandong University Jinan, China.
Front Microbiol. 2016 Nov 3;7:1755. doi: 10.3389/fmicb.2016.01755. eCollection 2016.
() is a common bioleaching bacterium that possesses a sophisticated and highly efficient inorganic sulfur compound metabolism network. Thiosulfate, a central intermediate in the sulfur metabolism network of and other sulfur-oxidizing microorganisms, can be metabolized via the tetrathionate intermediate (SI) pathway catalyzed by thiosulfate:quinol oxidoreductase (Tqo or DoxDA) and tetrathionate hydrolase (TetH). In , there is an additional two-component system called RsrS-RsrR. Since and are arranged as an operon with and in the genome, we suggest that the regulation of the SI pathway may occur via the RsrS-RsrR system. To examine the regulatory role of the two-component system RsrS-RsrR on the SI pathway, Δ and Δ strains were constructed in using a newly developed markerless gene knockout method. Transcriptional analysis of the cluster in the wild type and mutant strains revealed positive regulation of the SI pathway by the RsrS-RsrR system. A 19 bp inverted repeat sequence (IRS, AACACCTGTTACACCTGTT) located upstream of the promoter was identified as the binding site for RsrR by using electrophoretic mobility shift assays (EMSAs) and promoter-probe vectors . In addition, Δ, and Δ strains cultivated in KSO-medium exhibited significant growth differences when compared with the wild type. Transcriptional analysis indicated that the absence of or had different effects on the expression of genes involved in sulfur metabolism and signaling systems. Finally, a model of tetrathionate sensing by RsrS, signal transduction via RsrR, and transcriptional activation of - was proposed to provide insights toward the understanding of sulfur metabolism in . This study also provided a powerful genetic tool for studies in .
()是一种常见的生物浸矿细菌,拥有复杂且高效的无机硫化合物代谢网络。硫代硫酸盐是(该细菌)以及其他硫氧化微生物硫代谢网络的核心中间体,可通过由硫代硫酸盐:醌氧化还原酶(Tqo或DoxDA)和连四硫酸盐水解酶(TetH)催化的连四硫酸盐中间体(SI)途径进行代谢。在(该细菌中),存在一个名为RsrS-RsrR的双组分系统。由于(相关基因)在基因组中与(其他基因)以操纵子形式排列,我们推测SI途径的调控可能通过RsrS-RsrR系统发生。为了研究双组分系统RsrS-RsrR对SI途径的调控作用,使用新开发的无标记基因敲除方法在(该细菌中)构建了Δ和Δ菌株。对野生型和突变株中(相关)基因簇的转录分析揭示了RsrS-RsrR系统对SI途径的正向调控作用。通过电泳迁移率变动分析(EMSA)和启动子探针载体,确定位于(相关基因)启动子上游的一个19 bp反向重复序列(IRS,AACACCTGTTACACCTGTT)为RsrR的结合位点。此外,与野生型相比,在KSO培养基中培养的Δ、(相关突变株)和Δ菌株表现出显著的生长差异。转录分析表明,(相关基因)的缺失对参与硫代谢和信号系统的基因表达有不同影响。最后,提出了一个由RsrS感知连四硫酸盐、通过RsrR进行信号转导以及(相关基因)转录激活的模型,以深入了解(该细菌中的)硫代谢。本研究还为(该细菌的)研究提供了一个强大的遗传工具。