CONICET. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina.
Facultad de Farmacia y Bioquímica, Departamento de Química Biológica. Buenos Aires, Universidad de Buenos Aires, Buenos Aires, Argentina.
J Neurochem. 2020 Nov;155(3):327-338. doi: 10.1111/jnc.15019. Epub 2020 Apr 28.
Previous work by our group has shown the pro-differentiating effects of apotransferrin (aTf) on oligodendroglial cells in vivo and in vitro. Further studies showed the remyelinating effect of aTf in animal demyelination models such as hypoxia/ischemia, where the intranasal administration of human aTf provided brain neuroprotection and reduced white matter damage, neuronal loss, and astrogliosis in different brain regions. These data led us to search for a less invasive and controlled technique to deliver aTf to the CNS. To such end, we isolated extracellular vesicles (EVs) from human and mouse plasma and different neuron and glia conditioned media and characterized them based on their quality, quantity, identity, and structural integrity by western blot, dynamic light scattering, and scanning electron microscopy. All sources yielded highly pure vesicles whose size and structures were in keeping with previous literary evidence. Given that, remarkably, EVs from all sources analyzed contained Tf receptor 1 (TfR1) in their composition, we employed two passive cargo-loading strategies which rendered successful EV loading with aTf, specifically through binding to TfR1. These results unveil EVs as potential nanovehicles of aTf to be delivered into the CNS parenchyma, and pave the way for further studies into their possible clinical application in the treatment of demyelinating diseases.
我们小组之前的工作表明,转铁蛋白(aTf)在体内和体外对少突胶质细胞具有促分化作用。进一步的研究表明,aTf 在动物脱髓鞘模型(如缺氧/缺血)中具有髓鞘再生作用,在这些模型中,人 aTf 的鼻内给药提供了脑保护作用,并减少了不同脑区的白质损伤、神经元丢失和星形胶质细胞增生。这些数据促使我们寻找一种侵袭性更小、更可控的技术来将 aTf 递送到中枢神经系统。为此,我们从人血浆和不同神经元和神经胶质细胞的条件培养基中分离了细胞外囊泡(EVs),并通过 Western blot、动态光散射和扫描电子显微镜对其质量、数量、身份和结构完整性进行了表征。所有来源的囊泡都非常纯净,其大小和结构与之前的文献证据一致。值得注意的是,所有来源的 EVs 都含有转铁蛋白受体 1(TfR1),因此我们采用了两种被动货物加载策略,使 aTf 成功地加载到 EV 中,具体方法是通过与 TfR1 结合。这些结果揭示了 EVs 作为 aTf 递送到中枢神经系统实质的潜在纳米载体,并为进一步研究其在脱髓鞘疾病治疗中的潜在临床应用铺平了道路。