Suppr超能文献

使用秩-R奇异值分解对多通道磁共振波谱数据进行积分的优化截断。

Optimized truncation to integrate multi-channel MRS data using rank-R singular value decomposition.

作者信息

Sung Dongsuk, Risk Benjamin B, Owusu-Ansah Maame, Zhong Xiaodong, Mao Hui, Fleischer Candace C

机构信息

Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia.

Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia.

出版信息

NMR Biomed. 2020 Jul;33(7):e4297. doi: 10.1002/nbm.4297. Epub 2020 Apr 6.

Abstract

Multi-channel phased receive arrays have been widely adopted for magnetic resonance imaging (MRI) and spectroscopy (MRS). An important step in the use of receive arrays for MRS is the combination of spectra collected from individual coil channels. The goal of this work was to implement an improved strategy termed OpTIMUS (i.e., optimized truncation to integrate multi-channel MRS data using rank-R singular value decomposition) for combining data from individual channels. OpTIMUS relies on spectral windowing coupled with a rank-R decomposition to calculate the optimal coil channel weights. MRS data acquired from a brain spectroscopy phantom and 11 healthy volunteers were first processed using a whitening transformation to remove correlated noise. Whitened spectra were then iteratively windowed or truncated, followed by a rank-R singular value decomposition (SVD) to empirically determine the coil channel weights. Spectra combined using the vendor-supplied method, signal/noise weighting, previously reported whitened SVD (rank-1), and OpTIMUS were evaluated using the signal-to-noise ratio (SNR). Significant increases in SNR ranging from 6% to 33% (P ≤ 0.05) were observed for brain MRS data combined with OpTIMUS compared with the three other combination algorithms. The assumption that a rank-1 SVD maximizes SNR was tested empirically, and a higher rank-R decomposition, combined with spectral windowing prior to SVD, resulted in increased SNR.

摘要

多通道相控接收阵列已被广泛应用于磁共振成像(MRI)和磁共振波谱学(MRS)。在MRS中使用接收阵列的一个重要步骤是将从各个线圈通道采集的波谱进行合并。这项工作的目标是实现一种改进策略,称为OpTIMUS(即优化截断,使用秩-R奇异值分解来整合多通道MRS数据),用于合并来自各个通道的数据。OpTIMUS依靠频谱加窗结合秩-R分解来计算最佳线圈通道权重。首先对从脑部波谱模型和11名健康志愿者采集的MRS数据进行白化变换,以去除相关噪声。然后对白化后的波谱进行迭代加窗或截断,接着进行秩-R奇异值分解(SVD),以凭经验确定线圈通道权重。使用信噪比(SNR)对采用供应商提供的方法、信号/噪声加权、先前报道的白化SVD(秩-1)和OpTIMUS合并的波谱进行评估。与其他三种合并算法相比,对于采用OpTIMUS合并的脑部MRS数据,观察到信噪比显著提高,范围为6%至33%(P≤0.05)。凭经验测试了秩-1 SVD使信噪比最大化这一假设,并且更高秩的R分解与SVD之前的频谱加窗相结合,导致信噪比提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c9/7317403/27a92a33a4f0/NBM-33-e4297-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验