Duarte Leonardo J, Bruns Roy E
Instituto de Química, Universidade Estadual de Campinas, CP 6154, Campinas, São Paulo 13083-970, Brazil.
J Phys Chem A. 2020 Apr 30;124(17):3407-3416. doi: 10.1021/acs.jpca.0c01183. Epub 2020 Apr 16.
Atomic charges are invariant for out-of-plane distortions, making their molecular vibrations enticing for electronic structure studies. Of planar molecules, the boron trihalides contain some of the most polar bonds known to chemistry, although their out-of-plane bending intensities are very small contrary to expectations from atomic charge models. Here, the out-of-plane infrared intensities of the BXXX (X, X, X = H, F, Cl, Br) molecules are investigated using quantum theory of atoms in molecules atomic charges and atomic dipoles within the formulism of the charge, charge transfer, dipolar polarization model at the QCISD/aug-cc-pVTZ quantum level. Dipole moments induced by equilibrium charge displacement of atoms perpendicular to the molecular plane are almost completely cancelled by their electronic density polarizations. The calculated boron trihalide intensities are small for molecules with such polar bonds ranging from 0.6 to 106.1 km mol. Even though the Cl atomic charge of -0.72 e in BCl is more negative than the hydrogen values of -0.67 e in BH, the hydride out-of-plane intensity of 82.0 km mol is an order of magnitude larger than that of the trichloride, 6.3 km mol. Owing to their diverse electronic structures, transference of atomic charges and dipole parameters among the boron trihalides is extremely challenging and does not result in accurate intensity values. For this reason, a machine-learning decision-tree algorithm was used to perform the transference procedure. Decision trees were optimized using quantum-level intensity values. Atomic charge and dipole parameters were estimated for a set of 12 test set molecules. These parameters provided intensity estimates with a root-mean-square error of 2.1 km mol compared with QCISD/aug-cc-pVTZ reference values.
原子电荷对于面外畸变是不变的,这使得它们的分子振动对于电子结构研究具有吸引力。在平面分子中,三卤化硼包含一些化学中已知的极性最强的键,尽管它们的面外弯曲强度与原子电荷模型的预期相反非常小。在此,使用分子中的原子量子理论、原子电荷和原子偶极子,在电荷、电荷转移、偶极极化模型的框架内,在QCISD/aug-cc-pVTZ量子水平上研究了BXXX(X、X、X = H、F、Cl、Br)分子的面外红外强度。垂直于分子平面的原子平衡电荷位移所诱导的偶极矩几乎完全被它们的电子密度极化所抵消。对于具有这种极性键的分子,计算得到的三卤化硼强度很小,范围从0.6到106.1 km/mol。尽管BCl中Cl的原子电荷为-0.72 e比BH中H的-0.67 e更负,但氢化物的面外强度为82.0 km/mol比三氯化物的6.3 km/mol大一个数量级。由于它们多样的电子结构,三卤化硼之间原子电荷和偶极参数的转移极具挑战性,并且不会得到准确的强度值。因此,使用机器学习决策树算法来执行转移过程。决策树使用量子水平的强度值进行优化。对一组12个测试集分子估计了原子电荷和偶极参数。与QCISD/aug-cc-pVTZ参考值相比,这些参数提供的强度估计的均方根误差为2.1 km/mol。