Suppr超能文献

人工神经网络在神经康复中的应用:范围综述。

Artificial neural networks in neurorehabilitation: A scoping review.

机构信息

Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA.

Department of Information Technology, Jeonbuk National University, Jeonju, South Korea.

出版信息

NeuroRehabilitation. 2020;46(3):259-269. doi: 10.3233/NRE-192996.

Abstract

BACKGROUND

Advances in medical technology produce highly complex datasets in neurorehabilitation clinics and research laboratories. Artificial neural networks (ANNs) have been utilized to analyze big and complex datasets in various fields, but the use of ANNs in neurorehabilitation is limited.

OBJECTIVE

To explore the current use of ANNs in neurorehabilitation.

METHODS

PubMed, CINAHL, and Web of Science were used for the literature search. Studies in the scoping review (1) utilized ANNs, (2) examined populations with neurological conditions, and (3) focused on rehabilitation outcomes. The initial search identified 1,136 articles. A total of 19 articles were included.

RESULTS

ANNs were used for prediction of functional outcomes and mortality (n = 11) and classification of motor symptoms and cognitive status (n = 8). Most ANN-based models outperformed regression or other machine learning models (n = 11) and showed accurate performance (n = 6; no comparison with other models) in predicting clinical outcomes and accurately classifying different neurological impairments.

CONCLUSIONS

This scoping review provides encouraging evidence to use ANNs for clinical decision-making of complex datasets in neurorehabilitation. However, more research is needed to establish the clinical utility of ANNs in diagnosing, monitoring, and rehabilitation of individuals with neurological conditions.

摘要

背景

医学技术的进步在神经康复诊所和研究实验室中产生了高度复杂的数据集。人工神经网络(ANNs)已被用于分析各个领域的大数据集和复杂数据集,但在神经康复中的应用有限。

目的

探索人工神经网络在神经康复中的应用。

方法

通过 PubMed、CINAHL 和 Web of Science 进行文献检索。该综述的研究(1)使用了人工神经网络,(2)检查了患有神经疾病的人群,(3)专注于康复结果。最初的搜索确定了 1136 篇文章。共有 19 篇文章被纳入。

结果

人工神经网络用于预测功能结果和死亡率(n=11)以及运动症状和认知状态的分类(n=8)。大多数基于 ANN 的模型在预测临床结果和准确分类不同神经损伤方面表现优于回归或其他机器学习模型(n=11),并且具有准确的性能(n=6;与其他模型没有比较)。

结论

本范围综述提供了令人鼓舞的证据,表明可以将人工神经网络用于神经康复中复杂数据集的临床决策。然而,需要更多的研究来确定人工神经网络在诊断、监测和治疗神经疾病患者方面的临床效用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验